2fe226f8 |
1 | import time |
2 | import numpy |
3 | import colorsys |
4 | from PIL import Image, ImageDraw, ImageFont, ImageFilter |
5 | from fonts.ttf import RobotoMedium as UserFont |
6 | |
7 | import ST7735 |
8 | from bme280 import BME280 |
9 | from ltr559 import LTR559 |
10 | |
11 | import pytz |
12 | from astral import Astral |
13 | from datetime import datetime, timedelta |
14 | |
15 | try: |
16 | from smbus2 import SMBus |
17 | except ImportError: |
18 | from smbus import SMBus |
19 | |
20 | |
21 | def calculate_y_pos(x, centre): |
22 | """Calculates the y-coordinate on a parabolic curve, given x.""" |
23 | centre = 80 |
24 | y = 1 / centre * (x - centre) ** 2 |
25 | |
26 | return int(y) |
27 | |
28 | |
29 | def circle_coordinates(x, y, radius): |
30 | """Calculates the bounds of a circle, given centre and radius.""" |
31 | |
32 | x1 = x - radius # Left |
33 | x2 = x + radius # Right |
34 | y1 = y - radius # Bottom |
35 | y2 = y + radius # Top |
36 | |
37 | return (x1, y1, x2, y2) |
38 | |
39 | |
40 | def map_colour(x, centre, start_hue, end_hue, day): |
41 | """Given an x coordinate and a centre point, a start and end hue (in degrees), |
42 | and a Boolean for day or night (day is True, night False), calculate a colour |
43 | hue representing the 'colour' of that time of day.""" |
44 | |
45 | start_hue = start_hue / 360 # Rescale to between 0 and 1 |
46 | end_hue = end_hue / 360 |
47 | |
48 | sat = 1.0 |
49 | |
50 | # Dim the brightness as you move from the centre to the edges |
51 | val = 1 - (abs(centre - x) / (2 * centre)) |
52 | |
53 | # Ramp up towards centre, then back down |
54 | if x > centre: |
55 | x = (2 * centre) - x |
56 | |
57 | # Calculate the hue |
58 | hue = start_hue + ((x / centre) * (end_hue - start_hue)) |
59 | |
60 | # At night, move towards purple/blue hues and reverse dimming |
61 | if not day: |
62 | hue = 1 - hue |
63 | val = 1 - val |
64 | |
65 | r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(hue, sat, val)] |
66 | |
67 | return (r, g, b) |
68 | |
69 | |
70 | def x_from_sun_moon_time(progress, period, x_range): |
71 | """Recalculate/rescale an amount of progress through a time period.""" |
72 | |
73 | x = int((progress / period) * x_range) |
74 | |
75 | return x |
76 | |
77 | |
78 | def sun_moon_time(dt, city_name, time_zone): |
79 | """Calculate the progress through the current sun/moon period (i.e day or |
80 | night) from the last sunrise or sunset, given a datetime object 't'.""" |
81 | |
82 | a = Astral() |
83 | city = a[city_name] |
84 | |
85 | # Datetime objects for yesterday, today, tomorrow |
86 | today = dt.date() |
87 | dt = pytz.timezone(time_zone).localize(dt) |
88 | yesterday = today - timedelta(1) |
89 | tomorrow = today + timedelta(1) |
90 | |
91 | # Sun objects for yesterfay, today, tomorrow |
92 | sun_yesterday = city.sun(date=yesterday, local=True) |
93 | sun = city.sun(date=today, local=True) |
94 | sun_tomorrow = city.sun(date=tomorrow, local=True) |
95 | |
96 | # Work out sunset yesterday, sunrise/sunset today, and sunrise tomorrow |
97 | sunset_yesterday = sun_yesterday["sunset"] |
98 | sunrise_today = sun["sunrise"] |
99 | sunset_today = sun["sunset"] |
100 | sunrise_tomorrow = sun_tomorrow["sunrise"] |
101 | |
102 | # Work out lengths of day or night period and progress through period |
103 | if sunrise_today < dt < sunset_today: |
104 | day = True |
105 | period = sunset_today - sunrise_today |
106 | mid = sunrise_today + (period / 2) |
107 | progress = dt - sunrise_today |
108 | |
109 | elif dt > sunset_today: |
110 | day = False |
111 | period = sunrise_tomorrow - sunset_today |
112 | mid = sunset_today + (period / 2) |
113 | progress = dt - sunset_today |
114 | |
115 | else: |
116 | day = False |
117 | period = sunrise_today - sunset_yesterday |
118 | mid = sunset_yesterday + (period / 2) |
119 | progress = dt - sunset_yesterday |
120 | |
121 | # Convert time deltas to seconds |
122 | progress = progress.total_seconds() |
123 | period = period.total_seconds() |
124 | |
125 | return (progress, period, day) |
126 | |
127 | |
128 | def draw_background(progress, period, day): |
129 | """Given an amount of progress through the day or night, draw the |
130 | background colour and overlay a blurred sun/moon.""" |
131 | |
132 | # x-coordinate for sun/moon |
133 | x = x_from_sun_moon_time(progress, period, WIDTH) |
134 | |
135 | # If it's day, then move right to left |
136 | if day: |
137 | x = WIDTH - x |
138 | |
139 | # Calculate position on sun/moon's curve |
140 | centre = WIDTH / 2 |
141 | y = calculate_y_pos(x, centre) |
142 | |
143 | # Background colour |
144 | background = map_colour(x, 80, mid_hue, day_hue, day) |
145 | |
146 | # New image for background colour |
147 | img = Image.new('RGBA', (WIDTH, HEIGHT), color=background) |
148 | draw = ImageDraw.Draw(img) |
149 | |
150 | # New image for sun/moon overlay |
151 | overlay = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0)) |
152 | overlay_draw = ImageDraw.Draw(overlay) |
153 | |
154 | # Draw the sun/moon |
155 | circle = circle_coordinates(x, y, sun_radius) |
156 | overlay_draw.ellipse(circle, fill=(200, 200, 50, opacity)) |
157 | |
158 | # Overlay the sun/moon on the background as an alpha matte |
159 | composite = Image.alpha_composite(img, overlay).filter(ImageFilter.GaussianBlur(radius=blur)) |
160 | |
161 | return composite |
162 | |
163 | |
164 | def overlay_text(img, position, text, font, align_right=False, rectangle=False): |
165 | draw = ImageDraw.Draw(img) |
166 | w, h = font.getsize(text) |
167 | if align_right: |
168 | x, y = position |
169 | x -= w |
170 | position = (x, y) |
171 | if rectangle: |
172 | x += 1 |
173 | y += 1 |
174 | position = (x, y) |
175 | border = 1 |
176 | rect = (x - border, y, x + w, y + h + border) |
177 | rect_img = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0)) |
178 | rect_draw = ImageDraw.Draw(rect_img) |
179 | rect_draw.rectangle(rect, (255, 255, 255)) |
180 | rect_draw.text(position, text, font=font, fill=(0, 0, 0, 0)) |
181 | img = Image.alpha_composite(img, rect_img) |
182 | else: |
183 | draw.text(position, text, font=font, fill=(255, 255, 255)) |
184 | return img |
185 | |
186 | |
187 | def get_cpu_temperature(): |
188 | with open("/sys/class/thermal/thermal_zone0/temp", "r") as f: |
189 | temp = f.read() |
190 | temp = int(temp) / 1000.0 |
191 | return temp |
192 | |
193 | |
194 | def correct_humidity(humidity, temperature, corr_temperature): |
195 | dewpoint = temperature - ((100 - humidity) / 5) |
196 | corr_humidity = 100 - (5 * (corr_temperature - dewpoint)) |
197 | return min(100, corr_humidity) |
198 | |
199 | |
200 | def analyse_pressure(pressure, t): |
201 | global time_vals, pressure_vals, trend |
202 | if len(pressure_vals) > num_vals: |
203 | pressure_vals = pressure_vals[1:] + [pressure] |
204 | time_vals = time_vals[1:] + [t] |
205 | |
206 | # Calculate line of best fit |
207 | line = numpy.polyfit(time_vals, pressure_vals, 1, full=True) |
208 | |
209 | # Calculate slope, variance, and confidence |
210 | slope = line[0][0] |
211 | intercept = line[0][1] |
212 | variance = numpy.var(pressure_vals) |
213 | residuals = numpy.var([(slope * x + intercept - y) for x, y in zip(time_vals, pressure_vals)]) |
214 | r_squared = 1 - residuals / variance |
215 | |
216 | # Calculate change in pressure per hour |
217 | change_per_hour = slope * 60 * 60 |
218 | variance_per_hour = variance * 60 * 60 |
219 | |
220 | mean_pressure = numpy.mean(pressure_vals) |
221 | |
222 | # Calculate trend |
223 | if r_squared > 0.5: |
224 | if change_per_hour > 0.5: |
225 | trend = ">" |
226 | elif change_per_hour < -0.5: |
227 | trend = "<" |
228 | elif -0.5 <= change_per_hour <= 0.5: |
229 | trend = "-" |
230 | |
231 | if trend != "-": |
232 | if abs(change_per_hour) > 3: |
233 | trend *= 2 |
234 | else: |
235 | pressure_vals.append(pressure) |
236 | time_vals.append(t) |
237 | mean_pressure = numpy.mean(pressure_vals) |
238 | change_per_hour = 0 |
239 | trend = "-" |
240 | |
241 | # time.sleep(interval) |
242 | |
243 | return (mean_pressure, change_per_hour, trend) |
244 | |
245 | def describe_pressure(pressure): |
246 | """Convert pressure into barometer-type description.""" |
247 | if pressure < 970: |
248 | description = "storm" |
249 | elif 970 <= pressure < 990: |
250 | description = "rain" |
251 | elif 990 <= pressure < 1010: |
252 | description = "change" |
253 | elif 1010 <= pressure < 1030: |
254 | description = "fair" |
255 | elif pressure >= 1030: |
256 | description = "dry" |
257 | else: |
258 | description = "" |
259 | return description |
260 | |
261 | |
262 | def describe_humidity(humidity): |
263 | """Convert relative humidity into good/bad description.""" |
264 | if 40 < humidity < 60: |
265 | description = "good" |
266 | else: |
267 | description = "bad" |
268 | return description |
269 | |
270 | |
271 | def describe_light(light): |
272 | """Convert light level in lux to descriptive value.""" |
273 | if light < 50: |
274 | description = "dark" |
275 | elif 50 <= light < 100: |
276 | description = "dim" |
277 | elif 100 <= light < 500: |
278 | description = "light" |
279 | elif light >= 500: |
280 | description = "bright" |
281 | return description |
282 | |
283 | |
284 | # Initialise the LCD |
285 | disp = ST7735.ST7735( |
286 | port=0, |
287 | cs=1, |
288 | dc=9, |
289 | backlight=12, |
290 | rotation=270, |
291 | spi_speed_hz=10000000 |
292 | ) |
293 | |
294 | disp.begin() |
295 | |
296 | WIDTH = disp.width |
297 | HEIGHT = disp.height |
298 | |
299 | # The city and timezone that you want to display. |
300 | city_name = "Sheffield" |
301 | time_zone = "Europe/London" |
302 | |
303 | # Values that alter the look of the background |
304 | blur = 50 |
305 | opacity = 125 |
306 | |
307 | mid_hue = 0 |
308 | day_hue = 25 |
309 | |
310 | sun_radius = 50 |
311 | |
312 | # Fonts |
313 | font_sm = ImageFont.truetype(UserFont, 12) |
314 | font_lg = ImageFont.truetype(UserFont, 14) |
315 | |
316 | # Margins |
317 | margin = 3 |
318 | |
319 | dt = datetime.now() |
320 | |
321 | # Set up BME280 weather sensor |
322 | bus = SMBus(1) |
323 | bme280 = BME280(i2c_dev=bus) |
324 | |
325 | min_temp = bme280.get_temperature() |
326 | max_temp = bme280.get_temperature() |
327 | |
328 | factor = 2.25 |
329 | cpu_temps = [get_cpu_temperature()] * 5 |
330 | |
331 | # Set up light sensor |
332 | ltr559 = LTR559() |
333 | |
334 | # Pressure variables |
335 | pressure_vals = [] |
336 | time_vals = [] |
337 | num_vals = 1000 |
338 | interval = 1 |
339 | trend = "-" |
340 | |
341 | while True: |
342 | dt = datetime.now() |
343 | # dt += timedelta(minutes=5) |
344 | progress, period, day = sun_moon_time(dt, city_name, time_zone) |
345 | background = draw_background(progress, period, day) |
346 | |
347 | # Time. |
348 | date_string = dt.strftime("%d %b %y").lstrip('0') |
349 | time_string = dt.strftime("%H:%M") |
350 | img = overlay_text(background, (0 + margin, 0 + margin), time_string, font_lg) |
351 | img = overlay_text(img, (WIDTH - margin, 0 + margin), date_string, font_lg, align_right=True) |
352 | |
353 | # Temperature |
354 | temperature = bme280.get_temperature() |
355 | |
356 | # Corrected temperature |
357 | cpu_temp = get_cpu_temperature() |
358 | cpu_temps = cpu_temps[1:] + [cpu_temp] |
359 | avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps)) |
360 | corr_temperature = temperature - ((avg_cpu_temp - temperature) / factor) |
361 | |
362 | if corr_temperature < min_temp: |
363 | min_temp = corr_temperature |
364 | elif corr_temperature > max_temp: |
365 | max_temp = corr_temperature |
366 | |
367 | temp_string = f"{corr_temperature:.0f}°C" |
368 | img = overlay_text(img, (68, 18), temp_string, font_lg, align_right=True) |
369 | spacing = font_lg.getsize(temp_string)[1] + 1 |
370 | range_string = f"{min_temp:.0f}-{max_temp:.0f}" |
371 | img = overlay_text(img, (68, 18 + spacing), range_string, font_sm, align_right=True, rectangle=True) |
372 | temp_icon = Image.open("icons/temperature.png") |
373 | img.paste(temp_icon, (margin, 18), mask=temp_icon) |
374 | |
375 | # Humidity |
376 | humidity = bme280.get_humidity() |
377 | corr_humidity = correct_humidity(humidity, temperature, corr_temperature) |
378 | humidity_string = f"{corr_humidity:.0f}%" |
379 | img = overlay_text(img, (68, 48), humidity_string, font_lg, align_right=True) |
380 | spacing = font_lg.getsize(humidity_string)[1] + 1 |
381 | humidity_desc = describe_humidity(corr_humidity).upper() |
382 | img = overlay_text(img, (68, 48 + spacing), humidity_desc, font_sm, align_right=True, rectangle=True) |
383 | humidity_icon = Image.open("icons/humidity-" + humidity_desc.lower() + ".png") |
384 | img.paste(humidity_icon, (margin, 48), mask=humidity_icon) |
385 | |
386 | # Light |
387 | light = ltr559.get_lux() |
388 | light_string = f"{int(light):,}" |
389 | img = overlay_text(img, (WIDTH - margin, 18), light_string, font_lg, align_right=True) |
390 | spacing = font_lg.getsize(light_string.replace(",", ""))[1] + 1 |
391 | light_desc = describe_light(light).upper() |
392 | img = overlay_text(img, (WIDTH - margin - 1, 18 + spacing), light_desc, font_sm, align_right=True, rectangle=True) |
393 | light_icon = Image.open("icons/bulb-" + light_desc.lower() + ".png") |
394 | img.paste(humidity_icon, (80, 18), mask=light_icon) |
395 | |
396 | # Pressure |
397 | pressure = bme280.get_pressure() |
398 | t = time.time() |
399 | mean_pressure, change_per_hour, trend = analyse_pressure(pressure, t) |
400 | pressure_string = f"{int(mean_pressure):,} {trend}" |
401 | img = overlay_text(img, (WIDTH - margin, 48), pressure_string, font_lg, align_right=True) |
402 | pressure_desc = describe_pressure(mean_pressure).upper() |
403 | spacing = font_lg.getsize(pressure_string.replace(",", ""))[1] + 1 |
404 | img = overlay_text(img, (WIDTH - margin - 1, 48 + spacing), pressure_desc, font_sm, align_right=True, rectangle=True) |
405 | pressure_icon = Image.open("icons/weather-" + pressure_desc.lower() + ".png") |
406 | img.paste(pressure_icon, (80, 48), mask=pressure_icon) |
407 | |
408 | # Display image |
409 | disp.display(img) |