--- /dev/null
+import time
+import numpy
+import colorsys
+from PIL import Image, ImageDraw, ImageFont, ImageFilter
+from fonts.ttf import RobotoMedium as UserFont
+
+import ST7735
+from bme280 import BME280
+from ltr559 import LTR559
+
+import pytz
+from astral import Astral
+from datetime import datetime, timedelta
+
+try:
+ from smbus2 import SMBus
+except ImportError:
+ from smbus import SMBus
+
+
+def calculate_y_pos(x, centre):
+ """Calculates the y-coordinate on a parabolic curve, given x."""
+ centre = 80
+ y = 1 / centre * (x - centre) ** 2
+
+ return int(y)
+
+
+def circle_coordinates(x, y, radius):
+ """Calculates the bounds of a circle, given centre and radius."""
+
+ x1 = x - radius # Left
+ x2 = x + radius # Right
+ y1 = y - radius # Bottom
+ y2 = y + radius # Top
+
+ return (x1, y1, x2, y2)
+
+
+def map_colour(x, centre, start_hue, end_hue, day):
+ """Given an x coordinate and a centre point, a start and end hue (in degrees),
+ and a Boolean for day or night (day is True, night False), calculate a colour
+ hue representing the 'colour' of that time of day."""
+
+ start_hue = start_hue / 360 # Rescale to between 0 and 1
+ end_hue = end_hue / 360
+
+ sat = 1.0
+
+ # Dim the brightness as you move from the centre to the edges
+ val = 1 - (abs(centre - x) / (2 * centre))
+
+ # Ramp up towards centre, then back down
+ if x > centre:
+ x = (2 * centre) - x
+
+ # Calculate the hue
+ hue = start_hue + ((x / centre) * (end_hue - start_hue))
+
+ # At night, move towards purple/blue hues and reverse dimming
+ if not day:
+ hue = 1 - hue
+ val = 1 - val
+
+ r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(hue, sat, val)]
+
+ return (r, g, b)
+
+
+def x_from_sun_moon_time(progress, period, x_range):
+ """Recalculate/rescale an amount of progress through a time period."""
+
+ x = int((progress / period) * x_range)
+
+ return x
+
+
+def sun_moon_time(dt, city_name, time_zone):
+ """Calculate the progress through the current sun/moon period (i.e day or
+ night) from the last sunrise or sunset, given a datetime object 't'."""
+
+ a = Astral()
+ city = a[city_name]
+
+ # Datetime objects for yesterday, today, tomorrow
+ today = dt.date()
+ dt = pytz.timezone(time_zone).localize(dt)
+ yesterday = today - timedelta(1)
+ tomorrow = today + timedelta(1)
+
+ # Sun objects for yesterfay, today, tomorrow
+ sun_yesterday = city.sun(date=yesterday, local=True)
+ sun = city.sun(date=today, local=True)
+ sun_tomorrow = city.sun(date=tomorrow, local=True)
+
+ # Work out sunset yesterday, sunrise/sunset today, and sunrise tomorrow
+ sunset_yesterday = sun_yesterday["sunset"]
+ sunrise_today = sun["sunrise"]
+ sunset_today = sun["sunset"]
+ sunrise_tomorrow = sun_tomorrow["sunrise"]
+
+ # Work out lengths of day or night period and progress through period
+ if sunrise_today < dt < sunset_today:
+ day = True
+ period = sunset_today - sunrise_today
+ mid = sunrise_today + (period / 2)
+ progress = dt - sunrise_today
+
+ elif dt > sunset_today:
+ day = False
+ period = sunrise_tomorrow - sunset_today
+ mid = sunset_today + (period / 2)
+ progress = dt - sunset_today
+
+ else:
+ day = False
+ period = sunrise_today - sunset_yesterday
+ mid = sunset_yesterday + (period / 2)
+ progress = dt - sunset_yesterday
+
+ # Convert time deltas to seconds
+ progress = progress.total_seconds()
+ period = period.total_seconds()
+
+ return (progress, period, day)
+
+
+def draw_background(progress, period, day):
+ """Given an amount of progress through the day or night, draw the
+ background colour and overlay a blurred sun/moon."""
+
+ # x-coordinate for sun/moon
+ x = x_from_sun_moon_time(progress, period, WIDTH)
+
+ # If it's day, then move right to left
+ if day:
+ x = WIDTH - x
+
+ # Calculate position on sun/moon's curve
+ centre = WIDTH / 2
+ y = calculate_y_pos(x, centre)
+
+ # Background colour
+ background = map_colour(x, 80, mid_hue, day_hue, day)
+
+ # New image for background colour
+ img = Image.new('RGBA', (WIDTH, HEIGHT), color=background)
+ draw = ImageDraw.Draw(img)
+
+ # New image for sun/moon overlay
+ overlay = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0))
+ overlay_draw = ImageDraw.Draw(overlay)
+
+ # Draw the sun/moon
+ circle = circle_coordinates(x, y, sun_radius)
+ overlay_draw.ellipse(circle, fill=(200, 200, 50, opacity))
+
+ # Overlay the sun/moon on the background as an alpha matte
+ composite = Image.alpha_composite(img, overlay).filter(ImageFilter.GaussianBlur(radius=blur))
+
+ return composite
+
+
+def overlay_text(img, position, text, font, align_right=False, rectangle=False):
+ draw = ImageDraw.Draw(img)
+ w, h = font.getsize(text)
+ if align_right:
+ x, y = position
+ x -= w
+ position = (x, y)
+ if rectangle:
+ x += 1
+ y += 1
+ position = (x, y)
+ border = 1
+ rect = (x - border, y, x + w, y + h + border)
+ rect_img = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0))
+ rect_draw = ImageDraw.Draw(rect_img)
+ rect_draw.rectangle(rect, (255, 255, 255))
+ rect_draw.text(position, text, font=font, fill=(0, 0, 0, 0))
+ img = Image.alpha_composite(img, rect_img)
+ else:
+ draw.text(position, text, font=font, fill=(255, 255, 255))
+ return img
+
+
+def get_cpu_temperature():
+ with open("/sys/class/thermal/thermal_zone0/temp", "r") as f:
+ temp = f.read()
+ temp = int(temp) / 1000.0
+ return temp
+
+
+def correct_humidity(humidity, temperature, corr_temperature):
+ dewpoint = temperature - ((100 - humidity) / 5)
+ corr_humidity = 100 - (5 * (corr_temperature - dewpoint))
+ return min(100, corr_humidity)
+
+
+def analyse_pressure(pressure, t):
+ global time_vals, pressure_vals, trend
+ if len(pressure_vals) > num_vals:
+ pressure_vals = pressure_vals[1:] + [pressure]
+ time_vals = time_vals[1:] + [t]
+
+ # Calculate line of best fit
+ line = numpy.polyfit(time_vals, pressure_vals, 1, full=True)
+
+ # Calculate slope, variance, and confidence
+ slope = line[0][0]
+ intercept = line[0][1]
+ variance = numpy.var(pressure_vals)
+ residuals = numpy.var([(slope * x + intercept - y) for x, y in zip(time_vals, pressure_vals)])
+ r_squared = 1 - residuals / variance
+
+ # Calculate change in pressure per hour
+ change_per_hour = slope * 60 * 60
+ variance_per_hour = variance * 60 * 60
+
+ mean_pressure = numpy.mean(pressure_vals)
+
+ # Calculate trend
+ if r_squared > 0.5:
+ if change_per_hour > 0.5:
+ trend = ">"
+ elif change_per_hour < -0.5:
+ trend = "<"
+ elif -0.5 <= change_per_hour <= 0.5:
+ trend = "-"
+
+ if trend != "-":
+ if abs(change_per_hour) > 3:
+ trend *= 2
+ else:
+ pressure_vals.append(pressure)
+ time_vals.append(t)
+ mean_pressure = numpy.mean(pressure_vals)
+ change_per_hour = 0
+ trend = "-"
+
+# time.sleep(interval)
+
+ return (mean_pressure, change_per_hour, trend)
+
+def describe_pressure(pressure):
+ """Convert pressure into barometer-type description."""
+ if pressure < 970:
+ description = "storm"
+ elif 970 <= pressure < 990:
+ description = "rain"
+ elif 990 <= pressure < 1010:
+ description = "change"
+ elif 1010 <= pressure < 1030:
+ description = "fair"
+ elif pressure >= 1030:
+ description = "dry"
+ else:
+ description = ""
+ return description
+
+
+def describe_humidity(humidity):
+ """Convert relative humidity into good/bad description."""
+ if 40 < humidity < 60:
+ description = "good"
+ else:
+ description = "bad"
+ return description
+
+
+def describe_light(light):
+ """Convert light level in lux to descriptive value."""
+ if light < 50:
+ description = "dark"
+ elif 50 <= light < 100:
+ description = "dim"
+ elif 100 <= light < 500:
+ description = "light"
+ elif light >= 500:
+ description = "bright"
+ return description
+
+
+# Initialise the LCD
+disp = ST7735.ST7735(
+ port=0,
+ cs=1,
+ dc=9,
+ backlight=12,
+ rotation=270,
+ spi_speed_hz=10000000
+)
+
+disp.begin()
+
+WIDTH = disp.width
+HEIGHT = disp.height
+
+# The city and timezone that you want to display.
+city_name = "Sheffield"
+time_zone = "Europe/London"
+
+# Values that alter the look of the background
+blur = 50
+opacity = 125
+
+mid_hue = 0
+day_hue = 25
+
+sun_radius = 50
+
+# Fonts
+font_sm = ImageFont.truetype(UserFont, 12)
+font_lg = ImageFont.truetype(UserFont, 14)
+
+# Margins
+margin = 3
+
+dt = datetime.now()
+
+# Set up BME280 weather sensor
+bus = SMBus(1)
+bme280 = BME280(i2c_dev=bus)
+
+min_temp = bme280.get_temperature()
+max_temp = bme280.get_temperature()
+
+factor = 2.25
+cpu_temps = [get_cpu_temperature()] * 5
+
+# Set up light sensor
+ltr559 = LTR559()
+
+# Pressure variables
+pressure_vals = []
+time_vals = []
+num_vals = 1000
+interval = 1
+trend = "-"
+
+while True:
+ dt = datetime.now()
+# dt += timedelta(minutes=5)
+ progress, period, day = sun_moon_time(dt, city_name, time_zone)
+ background = draw_background(progress, period, day)
+
+ # Time.
+ date_string = dt.strftime("%d %b %y").lstrip('0')
+ time_string = dt.strftime("%H:%M")
+ img = overlay_text(background, (0 + margin, 0 + margin), time_string, font_lg)
+ img = overlay_text(img, (WIDTH - margin, 0 + margin), date_string, font_lg, align_right=True)
+
+ # Temperature
+ temperature = bme280.get_temperature()
+
+ # Corrected temperature
+ cpu_temp = get_cpu_temperature()
+ cpu_temps = cpu_temps[1:] + [cpu_temp]
+ avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps))
+ corr_temperature = temperature - ((avg_cpu_temp - temperature) / factor)
+
+ if corr_temperature < min_temp:
+ min_temp = corr_temperature
+ elif corr_temperature > max_temp:
+ max_temp = corr_temperature
+
+ temp_string = f"{corr_temperature:.0f}°C"
+ img = overlay_text(img, (68, 18), temp_string, font_lg, align_right=True)
+ spacing = font_lg.getsize(temp_string)[1] + 1
+ range_string = f"{min_temp:.0f}-{max_temp:.0f}"
+ img = overlay_text(img, (68, 18 + spacing), range_string, font_sm, align_right=True, rectangle=True)
+ temp_icon = Image.open("icons/temperature.png")
+ img.paste(temp_icon, (margin, 18), mask=temp_icon)
+
+ # Humidity
+ humidity = bme280.get_humidity()
+ corr_humidity = correct_humidity(humidity, temperature, corr_temperature)
+ humidity_string = f"{corr_humidity:.0f}%"
+ img = overlay_text(img, (68, 48), humidity_string, font_lg, align_right=True)
+ spacing = font_lg.getsize(humidity_string)[1] + 1
+ humidity_desc = describe_humidity(corr_humidity).upper()
+ img = overlay_text(img, (68, 48 + spacing), humidity_desc, font_sm, align_right=True, rectangle=True)
+ humidity_icon = Image.open("icons/humidity-" + humidity_desc.lower() + ".png")
+ img.paste(humidity_icon, (margin, 48), mask=humidity_icon)
+
+ # Light
+ light = ltr559.get_lux()
+ light_string = f"{int(light):,}"
+ img = overlay_text(img, (WIDTH - margin, 18), light_string, font_lg, align_right=True)
+ spacing = font_lg.getsize(light_string.replace(",", ""))[1] + 1
+ light_desc = describe_light(light).upper()
+ img = overlay_text(img, (WIDTH - margin - 1, 18 + spacing), light_desc, font_sm, align_right=True, rectangle=True)
+ light_icon = Image.open("icons/bulb-" + light_desc.lower() + ".png")
+ img.paste(humidity_icon, (80, 18), mask=light_icon)
+
+ # Pressure
+ pressure = bme280.get_pressure()
+ t = time.time()
+ mean_pressure, change_per_hour, trend = analyse_pressure(pressure, t)
+ pressure_string = f"{int(mean_pressure):,} {trend}"
+ img = overlay_text(img, (WIDTH - margin, 48), pressure_string, font_lg, align_right=True)
+ pressure_desc = describe_pressure(mean_pressure).upper()
+ spacing = font_lg.getsize(pressure_string.replace(",", ""))[1] + 1
+ img = overlay_text(img, (WIDTH - margin - 1, 48 + spacing), pressure_desc, font_sm, align_right=True, rectangle=True)
+ pressure_icon = Image.open("icons/weather-" + pressure_desc.lower() + ".png")
+ img.paste(pressure_icon, (80, 48), mask=pressure_icon)
+
+ # Display image
+ disp.display(img)