# One mode for each variable
if mode == 0:
- variable = "temperature"
+ # variable = "temperature"
unit = "C"
cpu_temp = get_cpu_temperature()
# Smooth out with some averaging to decrease jitter
avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps))
raw_temp = bme280.get_temperature()
data = raw_temp - ((avg_cpu_temp - raw_temp) / factor)
- display_text(variable, data, unit)
+ display_text(variables[mode], data, unit)
if mode == 1:
- variable = "pressure"
+ # variable = "pressure"
unit = "hPa"
data = bme280.get_pressure()
- display_text(variable, data, unit)
+ display_text(variables[mode], data, unit)
if mode == 2:
- variable = "humidity"
+ # variable = "humidity"
unit = "%"
data = bme280.get_humidity()
- display_text(variable, data, unit)
+ display_text(variables[mode], data, unit)
if mode == 3:
- variable = "light"
+ # variable = "light"
unit = "Lux"
if proximity < 10:
data = ltr559.get_lux()
else:
data = 1
- display_text(variable, data, unit)
+ display_text(variables[mode], data, unit)
if mode == 4:
- variable = "oxidised"
+ # variable = "oxidised"
unit = "kO"
data = gas.read_all()
data = data.oxidising / 1000
- display_text(variable, data, unit)
+ display_text(variables[mode], data, unit)
if mode == 5:
- variable = "reduced"
+ # variable = "reduced"
unit = "kO"
data = gas.read_all()
data = data.reducing / 1000
- display_text(variable, data, unit)
+ display_text(variables[mode], data, unit)
if mode == 6:
- variable = "nh3"
+ # variable = "nh3"
unit = "kO"
data = gas.read_all()
data = data.nh3 / 1000
- display_text(variable, data, unit)
+ display_text(variables[mode], data, unit)
# Exit cleanly
except KeyboardInterrupt: