return float(r);
+def rel_to_dpt(T,P,RH):
+ """Returns dew point temperature given relative humidity.
+
+ Inputs:
+ --------
+ T : float
+ Absolute temperature in units Kelvin (K).
+ P : float
+ Total pressure in units Pascals (Pa).
+ RH : float
+ Relative humidity in units percent (%).
+
+ Output:
+ --------
+ T_d : float
+ Dew point temperature in units Kelvin (K).
+
+ References:
+ --------
+ 1. Sonntag, D. "Advancements in the field of hygrometry". 1994. https://doi.org/10.1127/metz/3/1994/51
+ 2. Green, D. "Perry's Chemical Engineers' Handbook" (8th Edition). Page "12-4". McGraw-Hill Professional Publishing. 2007.
+
+ Version: 0.0.1
+ Author: Steven Baltakatei Sandoval
+ License: GPLv3+
+ """
+
+ import math;
+
+ # Check input types
+ T = float(T);
+ P = float(P);
+ RH = float(RH);
+
+ #debug
+ # print('DEBUG:Input Temperature (K) :' + str(T));
+ # print('DEBUG:Input Pressure (Pa) :' + str(P));
+ # print('DEBUG:Input Rel. Humidity (%) :' + str(RH));
+
+ # Set constants and initial conversions
+ epsilon = 0.62198 # (molar mass of water vapor) / (molar mass of dry air)
+ t = T - 273.15; # Celsius from Kelvin
+ P_hpa = P / 100; # hectoPascals (hPa) from Pascals (Pa)
+
+ # Calculate e_w(T), saturation vapor pressure of water in a pure phase, in Pascals
+ ln_e_w = -6096*T**-1 + 21.2409642 - 2.711193*10**-2*T + 1.673952*10**-5*T**2 + 2.433502*math.log(T); # Sonntag-1994 eq 7; e_w in Pascals
+ e_w = math.exp(ln_e_w);
+ e_w_hpa = e_w / 100; # also save e_w in hectoPascals (hPa)
+ # print('DEBUG:ln_e_w:' + str(ln_e_w)); # debug
+ # print('DEBUG:e_w:' + str(e_w)); # debug
+
+ # Calculate f_w(P,T), enhancement factor for water
+ f_w = 1 + (10**-4*e_w_hpa)/(273 + t)*(((38 + 173*math.exp(-t/43))*(1 - (e_w_hpa / P_hpa))) + ((6.39 + 4.28*math.exp(-t / 107))*((P_hpa / e_w_hpa) - 1))); # Sonntag-1994 eq 22.
+ # print('DEBUG:f_w:' + str(f_w)); # debug
+
+ # Calculate e_prime_w(P,T), saturation vapor pressure of water in air-water mixture, in Pascals
+ e_prime_w = f_w * e_w; # Sonntag-1994 eq 18
+ # print('DEBUG:e_prime_w:' + str(e_prime_w)); # debug
+
+ # Calculate e_prime, vapor pressure of water in air, in Pascals
+ e_prime = (RH / 100) * e_prime_w;
+ # print('DEBUG:e_prime:' + str(e_prime)); # debug
+
+ n = 0; repeat_flag = True;
+ while repeat_flag == True:
+ # print('DEBUG:n:' + str(n)); # debug
+
+ # Calculate f_w_td, the enhancement factor for water at dew point temperature.
+ if n == 0:
+ f = 1.0016 + 3.15*10**-6*P_hpa - (0.074 / P_hpa); # Sonntag-1994 eq 24
+ f_w_td = f; # initial approximation
+ elif n > 0:
+ t_d_prev = float(t_d); # save previous t_d value for later comparison
+ f_w_td = 1 + (10**-4*e_w_hpa)/(273 + t_d)*(((38 + 173*math.exp(-t_d/43))*(1 - (e_w_hpa / P_hpa))) + ((6.39 + 4.28*math.exp(-t_d / 107))*((P_hpa / e_w_hpa) - 1))); # Sonntag-1994 eq 22.
+ # print('DEBUG:f_w_td:' + str(f_w_td)); # debug
+
+ # Calculate e, the vapor pressure of water in the pure phase, in Pascals
+ e = (e_prime / f_w_td); # Sonntag-1994 eq 9 and 20
+ # print('DEBUG:e:' + str(e)); # debug
+
+ # Calculate y, an intermediate dew point calculation variable
+ y = math.log(e / 611.213);
+ # print('DEBUG:y:' + str(y)); # debug
+
+ # Calculate t_d, the dew point temperature in degrees Celsius
+ t_d = 13.715*y + 8.4262*10**-1*y**2 + 1.9048*10**-2*y**3 + 7.8158*10**-3*y**4;# Sonntag-1994 eq 10
+ # print('DEBUG:t_d:' + str(t_d)); # debug
+
+ if n == 0:
+ # First run
+ repeat_flag = True;
+ else:
+ # Test t_d accuracy
+ t_d_diff = math.fabs(t_d - t_d_prev);
+ # print('DEBUG:t_d :' + str(t_d)); # debug
+ # print('DEBUG:t_d_prev:' + str(t_d_prev)); # debug
+ # print('DEBUG:t_d_diff:' + str(t_d_diff)); # debug
+ if t_d_diff < 0.01:
+ repeat_flag = False;
+ else:
+ repeat_flag = True;
+
+ # Calculate T_d, the dew point temperature in Kelvin
+ T_d = 273.15 + t_d;
+ # print('DEBUG:T_d:' + str(T_d)); # debug
+
+ if n > 100:
+ return T_d; # good enough
+
+ # update loop counter
+ n += 1;
+ return T_d;
# Tuning factor for compensation. Decrease this number to adjust the
# temperature down, and increase to adjust up
"pressure",
"humidity",
"humidity_abs",
+ "dewpoint_temperature",
"light"]
values = {} # Initialize values dictionary
for v in variables:
# now_humidity_tuple (%)
# now_humidity_abs_gkg_tuple (g water vapor / kg dry air)
# now_illuminance_tuple (lux)
- # Depends: time, bme280, ltr559, get_cpu_temperature(), rel_to_abs()
+ # Depends: time, bme280, ltr559, get_cpu_temperature(), rel_to_abs(), rel_to_dpt()
# Tell function to modify these global variables
global now_temp_tuple
global now_pressure_tuple
global now_humidity_tuple
global now_humidity_abs_gkg_tuple
+ global now_humidity_dpt_c_tuple
global now_illuminance_tuple
# Initialize
cpu_temps = []
now_humidity_abs = rel_to_abs(raw_temp_k, now_pressure_pa, now_humidity); # calc kg/kg abs humidity
now_humidity_abs_gkg = now_humidity_abs * 1000;
now_humidity_abs_gkg_tuple = (time.time_ns(), 'g/kg', now_humidity_abs_gkg);
+ # Calculate dew point temperature
+ now_humidity_dpt = rel_to_dpt(raw_temp_k, now_pressure_pa, now_humidity); # calc K dpt
+ now_humidity_dpt_c = now_humidity_dpt - 273.15;
+ now_humidity_dpt_c_tuple = (time.time_ns(), '°C', now_humidity_dpt_c);
# Get light reading
proximity = ltr559.get_proximity() # get proximity reading
if proximity < 10:
global now_pressure_tuple
global now_humidity_tuple
global now_humidity_abs_gkg_tuple
+ global now_humidity_dpt_c_tuple
global now_illuminance_tuple
global varLenBuffer
global fixLenBuffer
#print('DEBUG:now_pressure_tuple:' + str(now_pressure_tuple))
#print('DEBUG:now_humidity_tuple:' + str(now_humidity_tuple))
#print('DEBUG:now_humidity_abs_gkg_tuple:' + str(now_humidity_abs_gkg_tuple))
+ #print('DEBUG:now_humidity_dpt_c_tuple:' + str(now_humidity_dpt_c_tuple))
#print('DEBUG:now_illuminance_tuple:' + str(now_illuminance_tuple))
# Append new sensor tuples to varying-length buffer
varLenBuffer[variables[2]].append(now_humidity_tuple)
## Absolute Humidity
varLenBuffer[variables[3]].append(now_humidity_abs_gkg_tuple)
+ ## Dew Point Temperature
+ varLenBuffer[variables[4]].append(now_humidity_dpt_c_tuple)
## Illuminance
- varLenBuffer[variables[4]].append(now_illuminance_tuple)
+ varLenBuffer[variables[5]].append(now_illuminance_tuple)
#print('DEBUG:varLenBuffer:' + str(varLenBuffer))
# Trim outdated sensor tuples from varying-length buffer
# print('DEBUG:now_pressure:' + str(now_pressure));
# print('DEBUG:now_pressure_pa:' + str(now_pressure_pa));
# print('DEBUG:now_humidity:' + str(now_humidity));
- # print('DEBUG:now_humidity_abs_gkg:' + str(data));
+ # print('DEBUG:now_humidity_abs_gkg:' + str(now_humidity_abs_gkg));
display_text2(variables[mode],data,unit,fixLenBuffer)
-
+
if mode == 4:
+ # variable = "humidity_abs"
+ unit = "°C"
+ raw_temp = bme280.get_temperature() # get °C from BME280 sensor
+ raw_temp_k = 273.15 + raw_temp; # convert sensor temp from degC to K
+ now_pressure = bme280.get_pressure() # get hPa from BME280 sensor
+ now_pressure_pa = now_pressure * 100; # convert sensor pressure from hPa to Pa
+ now_humidity = bme280.get_humidity() # get % relative humidity from BME280 sensor
+ now_humidity_dpt = rel_to_dpt(raw_temp_k,now_pressure_pa,now_humidity); # calc K dpt humidity
+ now_humidity_dpt_c = now_humidity_dpt - 273.15; # convert K to °C dpt humidity
+ data = now_humidity_dpt_c;
+ # print('DEBUG:raw_temp:' + str(raw_temp));
+ # print('DEBUG:raw_temp_k:' + str(raw_temp_k));
+ # print('DEBUG:now_pressure:' + str(now_pressure));
+ # print('DEBUG:now_pressure_pa:' + str(now_pressure_pa));
+ # print('DEBUG:now_humidity:' + str(now_humidity));
+ # print('DEBUG:now_humidity_dpt_c:' + str(now_humidity_dpt_c));
+ display_text2(variables[mode],data,unit,fixLenBuffer)
+
+ if mode == 5:
# variable = "light"
unit = "Lux"
if proximity < 10: