| 1 | #!/usr/bin/env python3 |
| 2 | |
| 3 | import time |
| 4 | import numpy |
| 5 | import colorsys |
| 6 | from PIL import Image, ImageDraw, ImageFont, ImageFilter |
| 7 | from fonts.ttf import RobotoMedium as UserFont |
| 8 | |
| 9 | import ST7735 |
| 10 | from bme280 import BME280 |
| 11 | from ltr559 import LTR559 |
| 12 | |
| 13 | import pytz |
| 14 | from astral import Astral |
| 15 | from datetime import datetime, timedelta |
| 16 | |
| 17 | try: |
| 18 | from smbus2 import SMBus |
| 19 | except ImportError: |
| 20 | from smbus import SMBus |
| 21 | |
| 22 | |
| 23 | def calculate_y_pos(x, centre): |
| 24 | """Calculates the y-coordinate on a parabolic curve, given x.""" |
| 25 | centre = 80 |
| 26 | y = 1 / centre * (x - centre) ** 2 |
| 27 | |
| 28 | return int(y) |
| 29 | |
| 30 | |
| 31 | def circle_coordinates(x, y, radius): |
| 32 | """Calculates the bounds of a circle, given centre and radius.""" |
| 33 | |
| 34 | x1 = x - radius # Left |
| 35 | x2 = x + radius # Right |
| 36 | y1 = y - radius # Bottom |
| 37 | y2 = y + radius # Top |
| 38 | |
| 39 | return (x1, y1, x2, y2) |
| 40 | |
| 41 | |
| 42 | def map_colour(x, centre, start_hue, end_hue, day): |
| 43 | """Given an x coordinate and a centre point, a start and end hue (in degrees), |
| 44 | and a Boolean for day or night (day is True, night False), calculate a colour |
| 45 | hue representing the 'colour' of that time of day.""" |
| 46 | |
| 47 | start_hue = start_hue / 360 # Rescale to between 0 and 1 |
| 48 | end_hue = end_hue / 360 |
| 49 | |
| 50 | sat = 1.0 |
| 51 | |
| 52 | # Dim the brightness as you move from the centre to the edges |
| 53 | val = 1 - (abs(centre - x) / (2 * centre)) |
| 54 | |
| 55 | # Ramp up towards centre, then back down |
| 56 | if x > centre: |
| 57 | x = (2 * centre) - x |
| 58 | |
| 59 | # Calculate the hue |
| 60 | hue = start_hue + ((x / centre) * (end_hue - start_hue)) |
| 61 | |
| 62 | # At night, move towards purple/blue hues and reverse dimming |
| 63 | if not day: |
| 64 | hue = 1 - hue |
| 65 | val = 1 - val |
| 66 | |
| 67 | r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(hue, sat, val)] |
| 68 | |
| 69 | return (r, g, b) |
| 70 | |
| 71 | |
| 72 | def x_from_sun_moon_time(progress, period, x_range): |
| 73 | """Recalculate/rescale an amount of progress through a time period.""" |
| 74 | |
| 75 | x = int((progress / period) * x_range) |
| 76 | |
| 77 | return x |
| 78 | |
| 79 | |
| 80 | def sun_moon_time(dt, city_name, time_zone): |
| 81 | """Calculate the progress through the current sun/moon period (i.e day or |
| 82 | night) from the last sunrise or sunset, given a datetime object 't'.""" |
| 83 | |
| 84 | a = Astral() |
| 85 | city = a[city_name] |
| 86 | |
| 87 | # Datetime objects for yesterday, today, tomorrow |
| 88 | today = dt.date() |
| 89 | dt = pytz.timezone(time_zone).localize(dt) |
| 90 | yesterday = today - timedelta(1) |
| 91 | tomorrow = today + timedelta(1) |
| 92 | |
| 93 | # Sun objects for yesterfay, today, tomorrow |
| 94 | sun_yesterday = city.sun(date=yesterday, local=True) |
| 95 | sun = city.sun(date=today, local=True) |
| 96 | sun_tomorrow = city.sun(date=tomorrow, local=True) |
| 97 | |
| 98 | # Work out sunset yesterday, sunrise/sunset today, and sunrise tomorrow |
| 99 | sunset_yesterday = sun_yesterday["sunset"] |
| 100 | sunrise_today = sun["sunrise"] |
| 101 | sunset_today = sun["sunset"] |
| 102 | sunrise_tomorrow = sun_tomorrow["sunrise"] |
| 103 | |
| 104 | # Work out lengths of day or night period and progress through period |
| 105 | if sunrise_today < dt < sunset_today: |
| 106 | day = True |
| 107 | period = sunset_today - sunrise_today |
| 108 | mid = sunrise_today + (period / 2) |
| 109 | progress = dt - sunrise_today |
| 110 | |
| 111 | elif dt > sunset_today: |
| 112 | day = False |
| 113 | period = sunrise_tomorrow - sunset_today |
| 114 | mid = sunset_today + (period / 2) |
| 115 | progress = dt - sunset_today |
| 116 | |
| 117 | else: |
| 118 | day = False |
| 119 | period = sunrise_today - sunset_yesterday |
| 120 | mid = sunset_yesterday + (period / 2) |
| 121 | progress = dt - sunset_yesterday |
| 122 | |
| 123 | # Convert time deltas to seconds |
| 124 | progress = progress.total_seconds() |
| 125 | period = period.total_seconds() |
| 126 | |
| 127 | return (progress, period, day) |
| 128 | |
| 129 | |
| 130 | def draw_background(progress, period, day): |
| 131 | """Given an amount of progress through the day or night, draw the |
| 132 | background colour and overlay a blurred sun/moon.""" |
| 133 | |
| 134 | # x-coordinate for sun/moon |
| 135 | x = x_from_sun_moon_time(progress, period, WIDTH) |
| 136 | |
| 137 | # If it's day, then move right to left |
| 138 | if day: |
| 139 | x = WIDTH - x |
| 140 | |
| 141 | # Calculate position on sun/moon's curve |
| 142 | centre = WIDTH / 2 |
| 143 | y = calculate_y_pos(x, centre) |
| 144 | |
| 145 | # Background colour |
| 146 | background = map_colour(x, 80, mid_hue, day_hue, day) |
| 147 | |
| 148 | # New image for background colour |
| 149 | img = Image.new('RGBA', (WIDTH, HEIGHT), color=background) |
| 150 | draw = ImageDraw.Draw(img) |
| 151 | |
| 152 | # New image for sun/moon overlay |
| 153 | overlay = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0)) |
| 154 | overlay_draw = ImageDraw.Draw(overlay) |
| 155 | |
| 156 | # Draw the sun/moon |
| 157 | circle = circle_coordinates(x, y, sun_radius) |
| 158 | overlay_draw.ellipse(circle, fill=(200, 200, 50, opacity)) |
| 159 | |
| 160 | # Overlay the sun/moon on the background as an alpha matte |
| 161 | composite = Image.alpha_composite(img, overlay).filter(ImageFilter.GaussianBlur(radius=blur)) |
| 162 | |
| 163 | return composite |
| 164 | |
| 165 | |
| 166 | def overlay_text(img, position, text, font, align_right=False, rectangle=False): |
| 167 | draw = ImageDraw.Draw(img) |
| 168 | w, h = font.getsize(text) |
| 169 | if align_right: |
| 170 | x, y = position |
| 171 | x -= w |
| 172 | position = (x, y) |
| 173 | if rectangle: |
| 174 | x += 1 |
| 175 | y += 1 |
| 176 | position = (x, y) |
| 177 | border = 1 |
| 178 | rect = (x - border, y, x + w, y + h + border) |
| 179 | rect_img = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0)) |
| 180 | rect_draw = ImageDraw.Draw(rect_img) |
| 181 | rect_draw.rectangle(rect, (255, 255, 255)) |
| 182 | rect_draw.text(position, text, font=font, fill=(0, 0, 0, 0)) |
| 183 | img = Image.alpha_composite(img, rect_img) |
| 184 | else: |
| 185 | draw.text(position, text, font=font, fill=(255, 255, 255)) |
| 186 | return img |
| 187 | |
| 188 | |
| 189 | def get_cpu_temperature(): |
| 190 | with open("/sys/class/thermal/thermal_zone0/temp", "r") as f: |
| 191 | temp = f.read() |
| 192 | temp = int(temp) / 1000.0 |
| 193 | return temp |
| 194 | |
| 195 | |
| 196 | def correct_humidity(humidity, temperature, corr_temperature): |
| 197 | dewpoint = temperature - ((100 - humidity) / 5) |
| 198 | corr_humidity = 100 - (5 * (corr_temperature - dewpoint)) |
| 199 | return min(100, corr_humidity) |
| 200 | |
| 201 | |
| 202 | def analyse_pressure(pressure, t): |
| 203 | global time_vals, pressure_vals, trend |
| 204 | if len(pressure_vals) > num_vals: |
| 205 | pressure_vals = pressure_vals[1:] + [pressure] |
| 206 | time_vals = time_vals[1:] + [t] |
| 207 | |
| 208 | # Calculate line of best fit |
| 209 | line = numpy.polyfit(time_vals, pressure_vals, 1, full=True) |
| 210 | |
| 211 | # Calculate slope, variance, and confidence |
| 212 | slope = line[0][0] |
| 213 | intercept = line[0][1] |
| 214 | variance = numpy.var(pressure_vals) |
| 215 | residuals = numpy.var([(slope * x + intercept - y) for x, y in zip(time_vals, pressure_vals)]) |
| 216 | r_squared = 1 - residuals / variance |
| 217 | |
| 218 | # Calculate change in pressure per hour |
| 219 | change_per_hour = slope * 60 * 60 |
| 220 | variance_per_hour = variance * 60 * 60 |
| 221 | |
| 222 | mean_pressure = numpy.mean(pressure_vals) |
| 223 | |
| 224 | # Calculate trend |
| 225 | if r_squared > 0.5: |
| 226 | if change_per_hour > 0.5: |
| 227 | trend = ">" |
| 228 | elif change_per_hour < -0.5: |
| 229 | trend = "<" |
| 230 | elif -0.5 <= change_per_hour <= 0.5: |
| 231 | trend = "-" |
| 232 | |
| 233 | if trend != "-": |
| 234 | if abs(change_per_hour) > 3: |
| 235 | trend *= 2 |
| 236 | else: |
| 237 | pressure_vals.append(pressure) |
| 238 | time_vals.append(t) |
| 239 | mean_pressure = numpy.mean(pressure_vals) |
| 240 | change_per_hour = 0 |
| 241 | trend = "-" |
| 242 | |
| 243 | # time.sleep(interval) |
| 244 | |
| 245 | return (mean_pressure, change_per_hour, trend) |
| 246 | |
| 247 | def describe_pressure(pressure): |
| 248 | """Convert pressure into barometer-type description.""" |
| 249 | if pressure < 970: |
| 250 | description = "storm" |
| 251 | elif 970 <= pressure < 990: |
| 252 | description = "rain" |
| 253 | elif 990 <= pressure < 1010: |
| 254 | description = "change" |
| 255 | elif 1010 <= pressure < 1030: |
| 256 | description = "fair" |
| 257 | elif pressure >= 1030: |
| 258 | description = "dry" |
| 259 | else: |
| 260 | description = "" |
| 261 | return description |
| 262 | |
| 263 | |
| 264 | def describe_humidity(humidity): |
| 265 | """Convert relative humidity into good/bad description.""" |
| 266 | if 40 < humidity < 60: |
| 267 | description = "good" |
| 268 | else: |
| 269 | description = "bad" |
| 270 | return description |
| 271 | |
| 272 | |
| 273 | def describe_light(light): |
| 274 | """Convert light level in lux to descriptive value.""" |
| 275 | if light < 50: |
| 276 | description = "dark" |
| 277 | elif 50 <= light < 100: |
| 278 | description = "dim" |
| 279 | elif 100 <= light < 500: |
| 280 | description = "light" |
| 281 | elif light >= 500: |
| 282 | description = "bright" |
| 283 | return description |
| 284 | |
| 285 | |
| 286 | # Initialise the LCD |
| 287 | disp = ST7735.ST7735( |
| 288 | port=0, |
| 289 | cs=1, |
| 290 | dc=9, |
| 291 | backlight=12, |
| 292 | rotation=270, |
| 293 | spi_speed_hz=10000000 |
| 294 | ) |
| 295 | |
| 296 | disp.begin() |
| 297 | |
| 298 | WIDTH = disp.width |
| 299 | HEIGHT = disp.height |
| 300 | |
| 301 | # The city and timezone that you want to display. |
| 302 | city_name = "Sheffield" |
| 303 | time_zone = "Europe/London" |
| 304 | |
| 305 | # Values that alter the look of the background |
| 306 | blur = 50 |
| 307 | opacity = 125 |
| 308 | |
| 309 | mid_hue = 0 |
| 310 | day_hue = 25 |
| 311 | |
| 312 | sun_radius = 50 |
| 313 | |
| 314 | # Fonts |
| 315 | font_sm = ImageFont.truetype(UserFont, 12) |
| 316 | font_lg = ImageFont.truetype(UserFont, 14) |
| 317 | |
| 318 | # Margins |
| 319 | margin = 3 |
| 320 | |
| 321 | dt = datetime.now() |
| 322 | |
| 323 | # Set up BME280 weather sensor |
| 324 | bus = SMBus(1) |
| 325 | bme280 = BME280(i2c_dev=bus) |
| 326 | |
| 327 | min_temp = bme280.get_temperature() |
| 328 | max_temp = bme280.get_temperature() |
| 329 | |
| 330 | factor = 2.25 |
| 331 | cpu_temps = [get_cpu_temperature()] * 5 |
| 332 | |
| 333 | # Set up light sensor |
| 334 | ltr559 = LTR559() |
| 335 | |
| 336 | # Pressure variables |
| 337 | pressure_vals = [] |
| 338 | time_vals = [] |
| 339 | num_vals = 1000 |
| 340 | interval = 1 |
| 341 | trend = "-" |
| 342 | |
| 343 | while True: |
| 344 | dt = datetime.now() |
| 345 | # dt += timedelta(minutes=5) |
| 346 | progress, period, day = sun_moon_time(dt, city_name, time_zone) |
| 347 | background = draw_background(progress, period, day) |
| 348 | |
| 349 | # Time. |
| 350 | date_string = dt.strftime("%d %b %y").lstrip('0') |
| 351 | time_string = dt.strftime("%H:%M") |
| 352 | img = overlay_text(background, (0 + margin, 0 + margin), time_string, font_lg) |
| 353 | img = overlay_text(img, (WIDTH - margin, 0 + margin), date_string, font_lg, align_right=True) |
| 354 | |
| 355 | # Temperature |
| 356 | temperature = bme280.get_temperature() |
| 357 | |
| 358 | # Corrected temperature |
| 359 | cpu_temp = get_cpu_temperature() |
| 360 | cpu_temps = cpu_temps[1:] + [cpu_temp] |
| 361 | avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps)) |
| 362 | corr_temperature = temperature - ((avg_cpu_temp - temperature) / factor) |
| 363 | |
| 364 | if corr_temperature < min_temp: |
| 365 | min_temp = corr_temperature |
| 366 | elif corr_temperature > max_temp: |
| 367 | max_temp = corr_temperature |
| 368 | |
| 369 | temp_string = f"{corr_temperature:.0f}°C" |
| 370 | img = overlay_text(img, (68, 18), temp_string, font_lg, align_right=True) |
| 371 | spacing = font_lg.getsize(temp_string)[1] + 1 |
| 372 | range_string = f"{min_temp:.0f}-{max_temp:.0f}" |
| 373 | img = overlay_text(img, (68, 18 + spacing), range_string, font_sm, align_right=True, rectangle=True) |
| 374 | temp_icon = Image.open("icons/temperature.png") |
| 375 | img.paste(temp_icon, (margin, 18), mask=temp_icon) |
| 376 | |
| 377 | # Humidity |
| 378 | humidity = bme280.get_humidity() |
| 379 | corr_humidity = correct_humidity(humidity, temperature, corr_temperature) |
| 380 | humidity_string = f"{corr_humidity:.0f}%" |
| 381 | img = overlay_text(img, (68, 48), humidity_string, font_lg, align_right=True) |
| 382 | spacing = font_lg.getsize(humidity_string)[1] + 1 |
| 383 | humidity_desc = describe_humidity(corr_humidity).upper() |
| 384 | img = overlay_text(img, (68, 48 + spacing), humidity_desc, font_sm, align_right=True, rectangle=True) |
| 385 | humidity_icon = Image.open("icons/humidity-" + humidity_desc.lower() + ".png") |
| 386 | img.paste(humidity_icon, (margin, 48), mask=humidity_icon) |
| 387 | |
| 388 | # Light |
| 389 | light = ltr559.get_lux() |
| 390 | light_string = f"{int(light):,}" |
| 391 | img = overlay_text(img, (WIDTH - margin, 18), light_string, font_lg, align_right=True) |
| 392 | spacing = font_lg.getsize(light_string.replace(",", ""))[1] + 1 |
| 393 | light_desc = describe_light(light).upper() |
| 394 | img = overlay_text(img, (WIDTH - margin - 1, 18 + spacing), light_desc, font_sm, align_right=True, rectangle=True) |
| 395 | light_icon = Image.open("icons/bulb-" + light_desc.lower() + ".png") |
| 396 | img.paste(humidity_icon, (80, 18), mask=light_icon) |
| 397 | |
| 398 | # Pressure |
| 399 | pressure = bme280.get_pressure() |
| 400 | t = time.time() |
| 401 | mean_pressure, change_per_hour, trend = analyse_pressure(pressure, t) |
| 402 | pressure_string = f"{int(mean_pressure):,} {trend}" |
| 403 | img = overlay_text(img, (WIDTH - margin, 48), pressure_string, font_lg, align_right=True) |
| 404 | pressure_desc = describe_pressure(mean_pressure).upper() |
| 405 | spacing = font_lg.getsize(pressure_string.replace(",", ""))[1] + 1 |
| 406 | img = overlay_text(img, (WIDTH - margin - 1, 48 + spacing), pressure_desc, font_sm, align_right=True, rectangle=True) |
| 407 | pressure_icon = Image.open("icons/weather-" + pressure_desc.lower() + ".png") |
| 408 | img.paste(pressure_icon, (80, 48), mask=pressure_icon) |
| 409 | |
| 410 | # Display image |
| 411 | disp.display(img) |