Commit | Line | Data |
---|---|---|
df20089d SM |
1 | #!/usr/bin/env python3 |
2 | ||
2fe226f8 | 3 | import time |
4 | import numpy | |
5 | import colorsys | |
6 | from PIL import Image, ImageDraw, ImageFont, ImageFilter | |
7 | from fonts.ttf import RobotoMedium as UserFont | |
8 | ||
9 | import ST7735 | |
10 | from bme280 import BME280 | |
11 | from ltr559 import LTR559 | |
12 | ||
13 | import pytz | |
14 | from astral import Astral | |
15 | from datetime import datetime, timedelta | |
16 | ||
17 | try: | |
18 | from smbus2 import SMBus | |
19 | except ImportError: | |
20 | from smbus import SMBus | |
21 | ||
22 | ||
23 | def calculate_y_pos(x, centre): | |
24 | """Calculates the y-coordinate on a parabolic curve, given x.""" | |
25 | centre = 80 | |
26 | y = 1 / centre * (x - centre) ** 2 | |
27 | ||
28 | return int(y) | |
29 | ||
30 | ||
31 | def circle_coordinates(x, y, radius): | |
32 | """Calculates the bounds of a circle, given centre and radius.""" | |
33 | ||
34 | x1 = x - radius # Left | |
35 | x2 = x + radius # Right | |
36 | y1 = y - radius # Bottom | |
37 | y2 = y + radius # Top | |
38 | ||
39 | return (x1, y1, x2, y2) | |
40 | ||
41 | ||
42 | def map_colour(x, centre, start_hue, end_hue, day): | |
43 | """Given an x coordinate and a centre point, a start and end hue (in degrees), | |
44 | and a Boolean for day or night (day is True, night False), calculate a colour | |
45 | hue representing the 'colour' of that time of day.""" | |
46 | ||
47 | start_hue = start_hue / 360 # Rescale to between 0 and 1 | |
48 | end_hue = end_hue / 360 | |
49 | ||
50 | sat = 1.0 | |
51 | ||
52 | # Dim the brightness as you move from the centre to the edges | |
53 | val = 1 - (abs(centre - x) / (2 * centre)) | |
54 | ||
55 | # Ramp up towards centre, then back down | |
56 | if x > centre: | |
57 | x = (2 * centre) - x | |
58 | ||
59 | # Calculate the hue | |
60 | hue = start_hue + ((x / centre) * (end_hue - start_hue)) | |
61 | ||
62 | # At night, move towards purple/blue hues and reverse dimming | |
63 | if not day: | |
64 | hue = 1 - hue | |
65 | val = 1 - val | |
66 | ||
67 | r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(hue, sat, val)] | |
68 | ||
69 | return (r, g, b) | |
70 | ||
71 | ||
72 | def x_from_sun_moon_time(progress, period, x_range): | |
73 | """Recalculate/rescale an amount of progress through a time period.""" | |
74 | ||
75 | x = int((progress / period) * x_range) | |
76 | ||
77 | return x | |
78 | ||
79 | ||
80 | def sun_moon_time(dt, city_name, time_zone): | |
81 | """Calculate the progress through the current sun/moon period (i.e day or | |
82 | night) from the last sunrise or sunset, given a datetime object 't'.""" | |
83 | ||
84 | a = Astral() | |
85 | city = a[city_name] | |
86 | ||
87 | # Datetime objects for yesterday, today, tomorrow | |
88 | today = dt.date() | |
89 | dt = pytz.timezone(time_zone).localize(dt) | |
90 | yesterday = today - timedelta(1) | |
91 | tomorrow = today + timedelta(1) | |
92 | ||
93 | # Sun objects for yesterfay, today, tomorrow | |
94 | sun_yesterday = city.sun(date=yesterday, local=True) | |
95 | sun = city.sun(date=today, local=True) | |
96 | sun_tomorrow = city.sun(date=tomorrow, local=True) | |
97 | ||
98 | # Work out sunset yesterday, sunrise/sunset today, and sunrise tomorrow | |
99 | sunset_yesterday = sun_yesterday["sunset"] | |
100 | sunrise_today = sun["sunrise"] | |
101 | sunset_today = sun["sunset"] | |
102 | sunrise_tomorrow = sun_tomorrow["sunrise"] | |
103 | ||
104 | # Work out lengths of day or night period and progress through period | |
105 | if sunrise_today < dt < sunset_today: | |
106 | day = True | |
107 | period = sunset_today - sunrise_today | |
108 | mid = sunrise_today + (period / 2) | |
109 | progress = dt - sunrise_today | |
110 | ||
111 | elif dt > sunset_today: | |
112 | day = False | |
113 | period = sunrise_tomorrow - sunset_today | |
114 | mid = sunset_today + (period / 2) | |
115 | progress = dt - sunset_today | |
116 | ||
117 | else: | |
118 | day = False | |
119 | period = sunrise_today - sunset_yesterday | |
120 | mid = sunset_yesterday + (period / 2) | |
121 | progress = dt - sunset_yesterday | |
122 | ||
123 | # Convert time deltas to seconds | |
124 | progress = progress.total_seconds() | |
125 | period = period.total_seconds() | |
126 | ||
127 | return (progress, period, day) | |
128 | ||
129 | ||
130 | def draw_background(progress, period, day): | |
131 | """Given an amount of progress through the day or night, draw the | |
132 | background colour and overlay a blurred sun/moon.""" | |
133 | ||
134 | # x-coordinate for sun/moon | |
135 | x = x_from_sun_moon_time(progress, period, WIDTH) | |
136 | ||
137 | # If it's day, then move right to left | |
138 | if day: | |
139 | x = WIDTH - x | |
140 | ||
141 | # Calculate position on sun/moon's curve | |
142 | centre = WIDTH / 2 | |
143 | y = calculate_y_pos(x, centre) | |
144 | ||
145 | # Background colour | |
146 | background = map_colour(x, 80, mid_hue, day_hue, day) | |
147 | ||
148 | # New image for background colour | |
149 | img = Image.new('RGBA', (WIDTH, HEIGHT), color=background) | |
150 | draw = ImageDraw.Draw(img) | |
151 | ||
152 | # New image for sun/moon overlay | |
153 | overlay = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0)) | |
154 | overlay_draw = ImageDraw.Draw(overlay) | |
155 | ||
156 | # Draw the sun/moon | |
157 | circle = circle_coordinates(x, y, sun_radius) | |
158 | overlay_draw.ellipse(circle, fill=(200, 200, 50, opacity)) | |
159 | ||
160 | # Overlay the sun/moon on the background as an alpha matte | |
161 | composite = Image.alpha_composite(img, overlay).filter(ImageFilter.GaussianBlur(radius=blur)) | |
162 | ||
163 | return composite | |
164 | ||
165 | ||
166 | def overlay_text(img, position, text, font, align_right=False, rectangle=False): | |
167 | draw = ImageDraw.Draw(img) | |
168 | w, h = font.getsize(text) | |
169 | if align_right: | |
170 | x, y = position | |
171 | x -= w | |
172 | position = (x, y) | |
173 | if rectangle: | |
174 | x += 1 | |
175 | y += 1 | |
176 | position = (x, y) | |
177 | border = 1 | |
178 | rect = (x - border, y, x + w, y + h + border) | |
179 | rect_img = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0)) | |
180 | rect_draw = ImageDraw.Draw(rect_img) | |
181 | rect_draw.rectangle(rect, (255, 255, 255)) | |
182 | rect_draw.text(position, text, font=font, fill=(0, 0, 0, 0)) | |
183 | img = Image.alpha_composite(img, rect_img) | |
184 | else: | |
185 | draw.text(position, text, font=font, fill=(255, 255, 255)) | |
186 | return img | |
187 | ||
188 | ||
189 | def get_cpu_temperature(): | |
190 | with open("/sys/class/thermal/thermal_zone0/temp", "r") as f: | |
191 | temp = f.read() | |
192 | temp = int(temp) / 1000.0 | |
193 | return temp | |
194 | ||
195 | ||
196 | def correct_humidity(humidity, temperature, corr_temperature): | |
197 | dewpoint = temperature - ((100 - humidity) / 5) | |
198 | corr_humidity = 100 - (5 * (corr_temperature - dewpoint)) | |
199 | return min(100, corr_humidity) | |
200 | ||
201 | ||
202 | def analyse_pressure(pressure, t): | |
203 | global time_vals, pressure_vals, trend | |
204 | if len(pressure_vals) > num_vals: | |
205 | pressure_vals = pressure_vals[1:] + [pressure] | |
206 | time_vals = time_vals[1:] + [t] | |
207 | ||
208 | # Calculate line of best fit | |
209 | line = numpy.polyfit(time_vals, pressure_vals, 1, full=True) | |
210 | ||
211 | # Calculate slope, variance, and confidence | |
212 | slope = line[0][0] | |
213 | intercept = line[0][1] | |
214 | variance = numpy.var(pressure_vals) | |
215 | residuals = numpy.var([(slope * x + intercept - y) for x, y in zip(time_vals, pressure_vals)]) | |
216 | r_squared = 1 - residuals / variance | |
217 | ||
218 | # Calculate change in pressure per hour | |
219 | change_per_hour = slope * 60 * 60 | |
220 | variance_per_hour = variance * 60 * 60 | |
221 | ||
222 | mean_pressure = numpy.mean(pressure_vals) | |
223 | ||
224 | # Calculate trend | |
225 | if r_squared > 0.5: | |
226 | if change_per_hour > 0.5: | |
227 | trend = ">" | |
228 | elif change_per_hour < -0.5: | |
229 | trend = "<" | |
230 | elif -0.5 <= change_per_hour <= 0.5: | |
231 | trend = "-" | |
232 | ||
233 | if trend != "-": | |
234 | if abs(change_per_hour) > 3: | |
235 | trend *= 2 | |
236 | else: | |
237 | pressure_vals.append(pressure) | |
238 | time_vals.append(t) | |
239 | mean_pressure = numpy.mean(pressure_vals) | |
240 | change_per_hour = 0 | |
241 | trend = "-" | |
242 | ||
243 | # time.sleep(interval) | |
244 | ||
245 | return (mean_pressure, change_per_hour, trend) | |
246 | ||
247 | def describe_pressure(pressure): | |
248 | """Convert pressure into barometer-type description.""" | |
249 | if pressure < 970: | |
250 | description = "storm" | |
251 | elif 970 <= pressure < 990: | |
252 | description = "rain" | |
253 | elif 990 <= pressure < 1010: | |
254 | description = "change" | |
255 | elif 1010 <= pressure < 1030: | |
256 | description = "fair" | |
257 | elif pressure >= 1030: | |
258 | description = "dry" | |
259 | else: | |
260 | description = "" | |
261 | return description | |
262 | ||
263 | ||
264 | def describe_humidity(humidity): | |
265 | """Convert relative humidity into good/bad description.""" | |
266 | if 40 < humidity < 60: | |
267 | description = "good" | |
268 | else: | |
269 | description = "bad" | |
270 | return description | |
271 | ||
272 | ||
273 | def describe_light(light): | |
274 | """Convert light level in lux to descriptive value.""" | |
275 | if light < 50: | |
276 | description = "dark" | |
277 | elif 50 <= light < 100: | |
278 | description = "dim" | |
279 | elif 100 <= light < 500: | |
280 | description = "light" | |
281 | elif light >= 500: | |
282 | description = "bright" | |
283 | return description | |
284 | ||
285 | ||
286 | # Initialise the LCD | |
287 | disp = ST7735.ST7735( | |
288 | port=0, | |
289 | cs=1, | |
290 | dc=9, | |
291 | backlight=12, | |
292 | rotation=270, | |
293 | spi_speed_hz=10000000 | |
294 | ) | |
295 | ||
296 | disp.begin() | |
297 | ||
298 | WIDTH = disp.width | |
299 | HEIGHT = disp.height | |
300 | ||
301 | # The city and timezone that you want to display. | |
302 | city_name = "Sheffield" | |
303 | time_zone = "Europe/London" | |
304 | ||
305 | # Values that alter the look of the background | |
306 | blur = 50 | |
307 | opacity = 125 | |
308 | ||
309 | mid_hue = 0 | |
310 | day_hue = 25 | |
311 | ||
312 | sun_radius = 50 | |
313 | ||
314 | # Fonts | |
315 | font_sm = ImageFont.truetype(UserFont, 12) | |
316 | font_lg = ImageFont.truetype(UserFont, 14) | |
317 | ||
318 | # Margins | |
319 | margin = 3 | |
320 | ||
321 | dt = datetime.now() | |
322 | ||
323 | # Set up BME280 weather sensor | |
324 | bus = SMBus(1) | |
325 | bme280 = BME280(i2c_dev=bus) | |
326 | ||
327 | min_temp = bme280.get_temperature() | |
328 | max_temp = bme280.get_temperature() | |
329 | ||
330 | factor = 2.25 | |
331 | cpu_temps = [get_cpu_temperature()] * 5 | |
332 | ||
333 | # Set up light sensor | |
334 | ltr559 = LTR559() | |
335 | ||
336 | # Pressure variables | |
337 | pressure_vals = [] | |
338 | time_vals = [] | |
339 | num_vals = 1000 | |
340 | interval = 1 | |
341 | trend = "-" | |
342 | ||
343 | while True: | |
344 | dt = datetime.now() | |
345 | # dt += timedelta(minutes=5) | |
346 | progress, period, day = sun_moon_time(dt, city_name, time_zone) | |
347 | background = draw_background(progress, period, day) | |
348 | ||
349 | # Time. | |
350 | date_string = dt.strftime("%d %b %y").lstrip('0') | |
351 | time_string = dt.strftime("%H:%M") | |
352 | img = overlay_text(background, (0 + margin, 0 + margin), time_string, font_lg) | |
353 | img = overlay_text(img, (WIDTH - margin, 0 + margin), date_string, font_lg, align_right=True) | |
354 | ||
355 | # Temperature | |
356 | temperature = bme280.get_temperature() | |
357 | ||
358 | # Corrected temperature | |
359 | cpu_temp = get_cpu_temperature() | |
360 | cpu_temps = cpu_temps[1:] + [cpu_temp] | |
361 | avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps)) | |
362 | corr_temperature = temperature - ((avg_cpu_temp - temperature) / factor) | |
363 | ||
364 | if corr_temperature < min_temp: | |
365 | min_temp = corr_temperature | |
366 | elif corr_temperature > max_temp: | |
367 | max_temp = corr_temperature | |
368 | ||
369 | temp_string = f"{corr_temperature:.0f}°C" | |
370 | img = overlay_text(img, (68, 18), temp_string, font_lg, align_right=True) | |
371 | spacing = font_lg.getsize(temp_string)[1] + 1 | |
372 | range_string = f"{min_temp:.0f}-{max_temp:.0f}" | |
373 | img = overlay_text(img, (68, 18 + spacing), range_string, font_sm, align_right=True, rectangle=True) | |
374 | temp_icon = Image.open("icons/temperature.png") | |
375 | img.paste(temp_icon, (margin, 18), mask=temp_icon) | |
376 | ||
377 | # Humidity | |
378 | humidity = bme280.get_humidity() | |
379 | corr_humidity = correct_humidity(humidity, temperature, corr_temperature) | |
380 | humidity_string = f"{corr_humidity:.0f}%" | |
381 | img = overlay_text(img, (68, 48), humidity_string, font_lg, align_right=True) | |
382 | spacing = font_lg.getsize(humidity_string)[1] + 1 | |
383 | humidity_desc = describe_humidity(corr_humidity).upper() | |
384 | img = overlay_text(img, (68, 48 + spacing), humidity_desc, font_sm, align_right=True, rectangle=True) | |
385 | humidity_icon = Image.open("icons/humidity-" + humidity_desc.lower() + ".png") | |
386 | img.paste(humidity_icon, (margin, 48), mask=humidity_icon) | |
387 | ||
388 | # Light | |
389 | light = ltr559.get_lux() | |
390 | light_string = f"{int(light):,}" | |
391 | img = overlay_text(img, (WIDTH - margin, 18), light_string, font_lg, align_right=True) | |
392 | spacing = font_lg.getsize(light_string.replace(",", ""))[1] + 1 | |
393 | light_desc = describe_light(light).upper() | |
394 | img = overlay_text(img, (WIDTH - margin - 1, 18 + spacing), light_desc, font_sm, align_right=True, rectangle=True) | |
395 | light_icon = Image.open("icons/bulb-" + light_desc.lower() + ".png") | |
396 | img.paste(humidity_icon, (80, 18), mask=light_icon) | |
397 | ||
398 | # Pressure | |
399 | pressure = bme280.get_pressure() | |
400 | t = time.time() | |
401 | mean_pressure, change_per_hour, trend = analyse_pressure(pressure, t) | |
402 | pressure_string = f"{int(mean_pressure):,} {trend}" | |
403 | img = overlay_text(img, (WIDTH - margin, 48), pressure_string, font_lg, align_right=True) | |
404 | pressure_desc = describe_pressure(mean_pressure).upper() | |
405 | spacing = font_lg.getsize(pressure_string.replace(",", ""))[1] + 1 | |
406 | img = overlay_text(img, (WIDTH - margin - 1, 48 + spacing), pressure_desc, font_sm, align_right=True, rectangle=True) | |
407 | pressure_icon = Image.open("icons/weather-" + pressure_desc.lower() + ".png") | |
408 | img.paste(pressure_icon, (80, 48), mask=pressure_icon) | |
409 | ||
410 | # Display image | |
411 | disp.display(img) |