Commit | Line | Data |
---|---|---|
df20089d | 1 | #!/usr/bin/env python3 |
3e4b64c3 PH |
2 | # -*- coding: utf-8 -*- |
3 | ||
4 | f"Sorry! This program requires Python >= 3.6 😅" | |
df20089d | 5 | |
20442c9a | 6 | import os |
2fe226f8 | 7 | import time |
8 | import numpy | |
9 | import colorsys | |
10 | from PIL import Image, ImageDraw, ImageFont, ImageFilter | |
11 | from fonts.ttf import RobotoMedium as UserFont | |
12 | ||
13 | import ST7735 | |
14 | from bme280 import BME280 | |
15 | from ltr559 import LTR559 | |
16 | ||
17 | import pytz | |
7614d188 | 18 | from pytz import timezone |
20442c9a | 19 | from astral.geocoder import database, lookup |
20 | from astral.sun import sun | |
2fe226f8 | 21 | from datetime import datetime, timedelta |
22 | ||
23 | try: | |
24 | from smbus2 import SMBus | |
25 | except ImportError: | |
26 | from smbus import SMBus | |
27 | ||
28 | ||
29 | def calculate_y_pos(x, centre): | |
30 | """Calculates the y-coordinate on a parabolic curve, given x.""" | |
31 | centre = 80 | |
32 | y = 1 / centre * (x - centre) ** 2 | |
33 | ||
34 | return int(y) | |
35 | ||
36 | ||
37 | def circle_coordinates(x, y, radius): | |
38 | """Calculates the bounds of a circle, given centre and radius.""" | |
39 | ||
40 | x1 = x - radius # Left | |
41 | x2 = x + radius # Right | |
42 | y1 = y - radius # Bottom | |
43 | y2 = y + radius # Top | |
44 | ||
45 | return (x1, y1, x2, y2) | |
46 | ||
47 | ||
48 | def map_colour(x, centre, start_hue, end_hue, day): | |
49 | """Given an x coordinate and a centre point, a start and end hue (in degrees), | |
50 | and a Boolean for day or night (day is True, night False), calculate a colour | |
51 | hue representing the 'colour' of that time of day.""" | |
52 | ||
53 | start_hue = start_hue / 360 # Rescale to between 0 and 1 | |
54 | end_hue = end_hue / 360 | |
55 | ||
56 | sat = 1.0 | |
57 | ||
58 | # Dim the brightness as you move from the centre to the edges | |
59 | val = 1 - (abs(centre - x) / (2 * centre)) | |
60 | ||
61 | # Ramp up towards centre, then back down | |
62 | if x > centre: | |
63 | x = (2 * centre) - x | |
64 | ||
65 | # Calculate the hue | |
66 | hue = start_hue + ((x / centre) * (end_hue - start_hue)) | |
67 | ||
68 | # At night, move towards purple/blue hues and reverse dimming | |
69 | if not day: | |
70 | hue = 1 - hue | |
71 | val = 1 - val | |
72 | ||
73 | r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(hue, sat, val)] | |
74 | ||
75 | return (r, g, b) | |
76 | ||
77 | ||
78 | def x_from_sun_moon_time(progress, period, x_range): | |
79 | """Recalculate/rescale an amount of progress through a time period.""" | |
80 | ||
81 | x = int((progress / period) * x_range) | |
82 | ||
83 | return x | |
84 | ||
85 | ||
7614d188 | 86 | def sun_moon_time(city_name, time_zone): |
2fe226f8 | 87 | """Calculate the progress through the current sun/moon period (i.e day or |
88 | night) from the last sunrise or sunset, given a datetime object 't'.""" | |
89 | ||
20442c9a | 90 | city = lookup(city_name, database()) |
2fe226f8 | 91 | |
92 | # Datetime objects for yesterday, today, tomorrow | |
7614d188 RF |
93 | utc = pytz.utc |
94 | utc_dt = datetime.now(tz=utc) | |
95 | local_dt = utc_dt.astimezone(pytz.timezone(time_zone)) | |
96 | today = local_dt.date() | |
2fe226f8 | 97 | yesterday = today - timedelta(1) |
98 | tomorrow = today + timedelta(1) | |
99 | ||
7614d188 | 100 | # Sun objects for yesterday, today, tomorrow |
20442c9a | 101 | sun_yesterday = sun(city.observer, date=yesterday) |
102 | sun_today = sun(city.observer, date=today) | |
103 | sun_tomorrow = sun(city.observer, date=tomorrow) | |
2fe226f8 | 104 | |
105 | # Work out sunset yesterday, sunrise/sunset today, and sunrise tomorrow | |
106 | sunset_yesterday = sun_yesterday["sunset"] | |
20442c9a | 107 | sunrise_today = sun_today["sunrise"] |
108 | sunset_today = sun_today["sunset"] | |
2fe226f8 | 109 | sunrise_tomorrow = sun_tomorrow["sunrise"] |
110 | ||
111 | # Work out lengths of day or night period and progress through period | |
7614d188 | 112 | if sunrise_today < local_dt < sunset_today: |
2fe226f8 | 113 | day = True |
114 | period = sunset_today - sunrise_today | |
be4d0fc9 | 115 | # mid = sunrise_today + (period / 2) |
7614d188 | 116 | progress = local_dt - sunrise_today |
2fe226f8 | 117 | |
7614d188 | 118 | elif local_dt > sunset_today: |
2fe226f8 | 119 | day = False |
120 | period = sunrise_tomorrow - sunset_today | |
be4d0fc9 | 121 | # mid = sunset_today + (period / 2) |
7614d188 | 122 | progress = local_dt - sunset_today |
2fe226f8 | 123 | |
124 | else: | |
125 | day = False | |
126 | period = sunrise_today - sunset_yesterday | |
be4d0fc9 | 127 | # mid = sunset_yesterday + (period / 2) |
7614d188 | 128 | progress = local_dt - sunset_yesterday |
2fe226f8 | 129 | |
130 | # Convert time deltas to seconds | |
131 | progress = progress.total_seconds() | |
132 | period = period.total_seconds() | |
133 | ||
7614d188 | 134 | return (progress, period, day, local_dt) |
2fe226f8 | 135 | |
136 | ||
137 | def draw_background(progress, period, day): | |
138 | """Given an amount of progress through the day or night, draw the | |
139 | background colour and overlay a blurred sun/moon.""" | |
140 | ||
141 | # x-coordinate for sun/moon | |
142 | x = x_from_sun_moon_time(progress, period, WIDTH) | |
143 | ||
144 | # If it's day, then move right to left | |
145 | if day: | |
146 | x = WIDTH - x | |
147 | ||
7614d188 | 148 | # Calculate position on sun/moon's curve |
2fe226f8 | 149 | centre = WIDTH / 2 |
150 | y = calculate_y_pos(x, centre) | |
151 | ||
152 | # Background colour | |
153 | background = map_colour(x, 80, mid_hue, day_hue, day) | |
154 | ||
155 | # New image for background colour | |
156 | img = Image.new('RGBA', (WIDTH, HEIGHT), color=background) | |
be4d0fc9 | 157 | # draw = ImageDraw.Draw(img) |
2fe226f8 | 158 | |
159 | # New image for sun/moon overlay | |
160 | overlay = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0)) | |
161 | overlay_draw = ImageDraw.Draw(overlay) | |
162 | ||
163 | # Draw the sun/moon | |
164 | circle = circle_coordinates(x, y, sun_radius) | |
165 | overlay_draw.ellipse(circle, fill=(200, 200, 50, opacity)) | |
166 | ||
167 | # Overlay the sun/moon on the background as an alpha matte | |
168 | composite = Image.alpha_composite(img, overlay).filter(ImageFilter.GaussianBlur(radius=blur)) | |
169 | ||
170 | return composite | |
171 | ||
172 | ||
173 | def overlay_text(img, position, text, font, align_right=False, rectangle=False): | |
174 | draw = ImageDraw.Draw(img) | |
175 | w, h = font.getsize(text) | |
176 | if align_right: | |
177 | x, y = position | |
178 | x -= w | |
179 | position = (x, y) | |
180 | if rectangle: | |
181 | x += 1 | |
182 | y += 1 | |
183 | position = (x, y) | |
184 | border = 1 | |
185 | rect = (x - border, y, x + w, y + h + border) | |
186 | rect_img = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0)) | |
187 | rect_draw = ImageDraw.Draw(rect_img) | |
188 | rect_draw.rectangle(rect, (255, 255, 255)) | |
189 | rect_draw.text(position, text, font=font, fill=(0, 0, 0, 0)) | |
190 | img = Image.alpha_composite(img, rect_img) | |
191 | else: | |
192 | draw.text(position, text, font=font, fill=(255, 255, 255)) | |
193 | return img | |
194 | ||
195 | ||
196 | def get_cpu_temperature(): | |
197 | with open("/sys/class/thermal/thermal_zone0/temp", "r") as f: | |
198 | temp = f.read() | |
199 | temp = int(temp) / 1000.0 | |
200 | return temp | |
201 | ||
202 | ||
203 | def correct_humidity(humidity, temperature, corr_temperature): | |
204 | dewpoint = temperature - ((100 - humidity) / 5) | |
205 | corr_humidity = 100 - (5 * (corr_temperature - dewpoint)) | |
206 | return min(100, corr_humidity) | |
207 | ||
208 | ||
209 | def analyse_pressure(pressure, t): | |
210 | global time_vals, pressure_vals, trend | |
211 | if len(pressure_vals) > num_vals: | |
212 | pressure_vals = pressure_vals[1:] + [pressure] | |
213 | time_vals = time_vals[1:] + [t] | |
214 | ||
215 | # Calculate line of best fit | |
216 | line = numpy.polyfit(time_vals, pressure_vals, 1, full=True) | |
217 | ||
218 | # Calculate slope, variance, and confidence | |
219 | slope = line[0][0] | |
220 | intercept = line[0][1] | |
221 | variance = numpy.var(pressure_vals) | |
be4d0fc9 | 222 | residuals = numpy.var([(slope * x + intercept - y) for x, y in zip(time_vals, pressure_vals)]) |
2fe226f8 | 223 | r_squared = 1 - residuals / variance |
224 | ||
225 | # Calculate change in pressure per hour | |
226 | change_per_hour = slope * 60 * 60 | |
be4d0fc9 | 227 | # variance_per_hour = variance * 60 * 60 |
2fe226f8 | 228 | |
229 | mean_pressure = numpy.mean(pressure_vals) | |
230 | ||
231 | # Calculate trend | |
232 | if r_squared > 0.5: | |
233 | if change_per_hour > 0.5: | |
234 | trend = ">" | |
235 | elif change_per_hour < -0.5: | |
236 | trend = "<" | |
237 | elif -0.5 <= change_per_hour <= 0.5: | |
238 | trend = "-" | |
239 | ||
240 | if trend != "-": | |
241 | if abs(change_per_hour) > 3: | |
242 | trend *= 2 | |
243 | else: | |
244 | pressure_vals.append(pressure) | |
245 | time_vals.append(t) | |
246 | mean_pressure = numpy.mean(pressure_vals) | |
247 | change_per_hour = 0 | |
248 | trend = "-" | |
249 | ||
be4d0fc9 | 250 | # time.sleep(interval) |
2fe226f8 | 251 | return (mean_pressure, change_per_hour, trend) |
252 | ||
be4d0fc9 | 253 | |
2fe226f8 | 254 | def describe_pressure(pressure): |
255 | """Convert pressure into barometer-type description.""" | |
256 | if pressure < 970: | |
257 | description = "storm" | |
258 | elif 970 <= pressure < 990: | |
259 | description = "rain" | |
260 | elif 990 <= pressure < 1010: | |
261 | description = "change" | |
262 | elif 1010 <= pressure < 1030: | |
263 | description = "fair" | |
264 | elif pressure >= 1030: | |
265 | description = "dry" | |
266 | else: | |
267 | description = "" | |
268 | return description | |
269 | ||
270 | ||
271 | def describe_humidity(humidity): | |
272 | """Convert relative humidity into good/bad description.""" | |
273 | if 40 < humidity < 60: | |
274 | description = "good" | |
275 | else: | |
276 | description = "bad" | |
277 | return description | |
278 | ||
279 | ||
280 | def describe_light(light): | |
281 | """Convert light level in lux to descriptive value.""" | |
282 | if light < 50: | |
283 | description = "dark" | |
284 | elif 50 <= light < 100: | |
285 | description = "dim" | |
286 | elif 100 <= light < 500: | |
287 | description = "light" | |
288 | elif light >= 500: | |
289 | description = "bright" | |
290 | return description | |
291 | ||
292 | ||
293 | # Initialise the LCD | |
294 | disp = ST7735.ST7735( | |
295 | port=0, | |
296 | cs=1, | |
297 | dc=9, | |
298 | backlight=12, | |
299 | rotation=270, | |
300 | spi_speed_hz=10000000 | |
301 | ) | |
302 | ||
303 | disp.begin() | |
304 | ||
305 | WIDTH = disp.width | |
306 | HEIGHT = disp.height | |
307 | ||
308 | # The city and timezone that you want to display. | |
309 | city_name = "Sheffield" | |
310 | time_zone = "Europe/London" | |
311 | ||
312 | # Values that alter the look of the background | |
313 | blur = 50 | |
314 | opacity = 125 | |
315 | ||
316 | mid_hue = 0 | |
317 | day_hue = 25 | |
318 | ||
319 | sun_radius = 50 | |
320 | ||
321 | # Fonts | |
322 | font_sm = ImageFont.truetype(UserFont, 12) | |
323 | font_lg = ImageFont.truetype(UserFont, 14) | |
324 | ||
325 | # Margins | |
326 | margin = 3 | |
327 | ||
2fe226f8 | 328 | |
329 | # Set up BME280 weather sensor | |
330 | bus = SMBus(1) | |
331 | bme280 = BME280(i2c_dev=bus) | |
332 | ||
20442c9a | 333 | min_temp = None |
334 | max_temp = None | |
2fe226f8 | 335 | |
336 | factor = 2.25 | |
337 | cpu_temps = [get_cpu_temperature()] * 5 | |
338 | ||
339 | # Set up light sensor | |
340 | ltr559 = LTR559() | |
341 | ||
342 | # Pressure variables | |
343 | pressure_vals = [] | |
344 | time_vals = [] | |
345 | num_vals = 1000 | |
346 | interval = 1 | |
347 | trend = "-" | |
348 | ||
20442c9a | 349 | # Keep track of time elapsed |
350 | start_time = time.time() | |
351 | ||
2fe226f8 | 352 | while True: |
20442c9a | 353 | path = os.path.dirname(os.path.realpath(__file__)) |
7614d188 | 354 | progress, period, day, local_dt = sun_moon_time(city_name, time_zone) |
2fe226f8 | 355 | background = draw_background(progress, period, day) |
356 | ||
357 | # Time. | |
20442c9a | 358 | time_elapsed = time.time() - start_time |
7614d188 RF |
359 | date_string = local_dt.strftime("%d %b %y").lstrip('0') |
360 | time_string = local_dt.strftime("%H:%M") | |
2fe226f8 | 361 | img = overlay_text(background, (0 + margin, 0 + margin), time_string, font_lg) |
362 | img = overlay_text(img, (WIDTH - margin, 0 + margin), date_string, font_lg, align_right=True) | |
363 | ||
364 | # Temperature | |
365 | temperature = bme280.get_temperature() | |
366 | ||
367 | # Corrected temperature | |
368 | cpu_temp = get_cpu_temperature() | |
369 | cpu_temps = cpu_temps[1:] + [cpu_temp] | |
370 | avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps)) | |
371 | corr_temperature = temperature - ((avg_cpu_temp - temperature) / factor) | |
372 | ||
20442c9a | 373 | if time_elapsed > 30: |
374 | if min_temp is not None and max_temp is not None: | |
375 | if corr_temperature < min_temp: | |
376 | min_temp = corr_temperature | |
377 | elif corr_temperature > max_temp: | |
378 | max_temp = corr_temperature | |
379 | else: | |
380 | min_temp = corr_temperature | |
381 | max_temp = corr_temperature | |
2fe226f8 | 382 | |
383 | temp_string = f"{corr_temperature:.0f}°C" | |
384 | img = overlay_text(img, (68, 18), temp_string, font_lg, align_right=True) | |
385 | spacing = font_lg.getsize(temp_string)[1] + 1 | |
20442c9a | 386 | if min_temp is not None and max_temp is not None: |
387 | range_string = f"{min_temp:.0f}-{max_temp:.0f}" | |
388 | else: | |
389 | range_string = "------" | |
2fe226f8 | 390 | img = overlay_text(img, (68, 18 + spacing), range_string, font_sm, align_right=True, rectangle=True) |
be4d0fc9 | 391 | temp_icon = Image.open(f"{path}/icons/temperature.png") |
2fe226f8 | 392 | img.paste(temp_icon, (margin, 18), mask=temp_icon) |
393 | ||
394 | # Humidity | |
395 | humidity = bme280.get_humidity() | |
396 | corr_humidity = correct_humidity(humidity, temperature, corr_temperature) | |
397 | humidity_string = f"{corr_humidity:.0f}%" | |
398 | img = overlay_text(img, (68, 48), humidity_string, font_lg, align_right=True) | |
399 | spacing = font_lg.getsize(humidity_string)[1] + 1 | |
400 | humidity_desc = describe_humidity(corr_humidity).upper() | |
401 | img = overlay_text(img, (68, 48 + spacing), humidity_desc, font_sm, align_right=True, rectangle=True) | |
be4d0fc9 | 402 | humidity_icon = Image.open(f"{path}/icons/humidity-{humidity_desc.lower()}.png") |
2fe226f8 | 403 | img.paste(humidity_icon, (margin, 48), mask=humidity_icon) |
404 | ||
405 | # Light | |
406 | light = ltr559.get_lux() | |
407 | light_string = f"{int(light):,}" | |
408 | img = overlay_text(img, (WIDTH - margin, 18), light_string, font_lg, align_right=True) | |
409 | spacing = font_lg.getsize(light_string.replace(",", ""))[1] + 1 | |
410 | light_desc = describe_light(light).upper() | |
411 | img = overlay_text(img, (WIDTH - margin - 1, 18 + spacing), light_desc, font_sm, align_right=True, rectangle=True) | |
be4d0fc9 | 412 | light_icon = Image.open(f"{path}/icons/bulb-{light_desc.lower()}.png") |
2fe226f8 | 413 | img.paste(humidity_icon, (80, 18), mask=light_icon) |
414 | ||
415 | # Pressure | |
416 | pressure = bme280.get_pressure() | |
417 | t = time.time() | |
418 | mean_pressure, change_per_hour, trend = analyse_pressure(pressure, t) | |
419 | pressure_string = f"{int(mean_pressure):,} {trend}" | |
420 | img = overlay_text(img, (WIDTH - margin, 48), pressure_string, font_lg, align_right=True) | |
421 | pressure_desc = describe_pressure(mean_pressure).upper() | |
422 | spacing = font_lg.getsize(pressure_string.replace(",", ""))[1] + 1 | |
423 | img = overlay_text(img, (WIDTH - margin - 1, 48 + spacing), pressure_desc, font_sm, align_right=True, rectangle=True) | |
be4d0fc9 | 424 | pressure_icon = Image.open(f"{path}/icons/weather-{pressure_desc.lower()}.png") |
2fe226f8 | 425 | img.paste(pressure_icon, (80, 48), mask=pressure_icon) |
426 | ||
427 | # Display image | |
428 | disp.display(img) |