Commit | Line | Data |
---|---|---|
df20089d SM |
1 | #!/usr/bin/env python3 |
2 | ||
20442c9a | 3 | import os |
2fe226f8 | 4 | import time |
5 | import numpy | |
6 | import colorsys | |
7 | from PIL import Image, ImageDraw, ImageFont, ImageFilter | |
8 | from fonts.ttf import RobotoMedium as UserFont | |
9 | ||
10 | import ST7735 | |
11 | from bme280 import BME280 | |
12 | from ltr559 import LTR559 | |
13 | ||
14 | import pytz | |
20442c9a | 15 | from astral.geocoder import database, lookup |
16 | from astral.sun import sun | |
2fe226f8 | 17 | from datetime import datetime, timedelta |
18 | ||
19 | try: | |
20 | from smbus2 import SMBus | |
21 | except ImportError: | |
22 | from smbus import SMBus | |
23 | ||
24 | ||
25 | def calculate_y_pos(x, centre): | |
26 | """Calculates the y-coordinate on a parabolic curve, given x.""" | |
27 | centre = 80 | |
28 | y = 1 / centre * (x - centre) ** 2 | |
29 | ||
30 | return int(y) | |
31 | ||
32 | ||
33 | def circle_coordinates(x, y, radius): | |
34 | """Calculates the bounds of a circle, given centre and radius.""" | |
35 | ||
36 | x1 = x - radius # Left | |
37 | x2 = x + radius # Right | |
38 | y1 = y - radius # Bottom | |
39 | y2 = y + radius # Top | |
40 | ||
41 | return (x1, y1, x2, y2) | |
42 | ||
43 | ||
44 | def map_colour(x, centre, start_hue, end_hue, day): | |
45 | """Given an x coordinate and a centre point, a start and end hue (in degrees), | |
46 | and a Boolean for day or night (day is True, night False), calculate a colour | |
47 | hue representing the 'colour' of that time of day.""" | |
48 | ||
49 | start_hue = start_hue / 360 # Rescale to between 0 and 1 | |
50 | end_hue = end_hue / 360 | |
51 | ||
52 | sat = 1.0 | |
53 | ||
54 | # Dim the brightness as you move from the centre to the edges | |
55 | val = 1 - (abs(centre - x) / (2 * centre)) | |
56 | ||
57 | # Ramp up towards centre, then back down | |
58 | if x > centre: | |
59 | x = (2 * centre) - x | |
60 | ||
61 | # Calculate the hue | |
62 | hue = start_hue + ((x / centre) * (end_hue - start_hue)) | |
63 | ||
64 | # At night, move towards purple/blue hues and reverse dimming | |
65 | if not day: | |
66 | hue = 1 - hue | |
67 | val = 1 - val | |
68 | ||
69 | r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(hue, sat, val)] | |
70 | ||
71 | return (r, g, b) | |
72 | ||
73 | ||
74 | def x_from_sun_moon_time(progress, period, x_range): | |
75 | """Recalculate/rescale an amount of progress through a time period.""" | |
76 | ||
77 | x = int((progress / period) * x_range) | |
78 | ||
79 | return x | |
80 | ||
81 | ||
82 | def sun_moon_time(dt, city_name, time_zone): | |
83 | """Calculate the progress through the current sun/moon period (i.e day or | |
84 | night) from the last sunrise or sunset, given a datetime object 't'.""" | |
85 | ||
20442c9a | 86 | city = lookup(city_name, database()) |
2fe226f8 | 87 | |
88 | # Datetime objects for yesterday, today, tomorrow | |
89 | today = dt.date() | |
90 | dt = pytz.timezone(time_zone).localize(dt) | |
91 | yesterday = today - timedelta(1) | |
92 | tomorrow = today + timedelta(1) | |
93 | ||
94 | # Sun objects for yesterfay, today, tomorrow | |
20442c9a | 95 | sun_yesterday = sun(city.observer, date=yesterday) |
96 | sun_today = sun(city.observer, date=today) | |
97 | sun_tomorrow = sun(city.observer, date=tomorrow) | |
2fe226f8 | 98 | |
99 | # Work out sunset yesterday, sunrise/sunset today, and sunrise tomorrow | |
100 | sunset_yesterday = sun_yesterday["sunset"] | |
20442c9a | 101 | sunrise_today = sun_today["sunrise"] |
102 | sunset_today = sun_today["sunset"] | |
2fe226f8 | 103 | sunrise_tomorrow = sun_tomorrow["sunrise"] |
104 | ||
105 | # Work out lengths of day or night period and progress through period | |
106 | if sunrise_today < dt < sunset_today: | |
107 | day = True | |
108 | period = sunset_today - sunrise_today | |
109 | mid = sunrise_today + (period / 2) | |
110 | progress = dt - sunrise_today | |
111 | ||
112 | elif dt > sunset_today: | |
113 | day = False | |
114 | period = sunrise_tomorrow - sunset_today | |
115 | mid = sunset_today + (period / 2) | |
116 | progress = dt - sunset_today | |
117 | ||
118 | else: | |
119 | day = False | |
120 | period = sunrise_today - sunset_yesterday | |
121 | mid = sunset_yesterday + (period / 2) | |
122 | progress = dt - sunset_yesterday | |
123 | ||
124 | # Convert time deltas to seconds | |
125 | progress = progress.total_seconds() | |
126 | period = period.total_seconds() | |
127 | ||
128 | return (progress, period, day) | |
129 | ||
130 | ||
131 | def draw_background(progress, period, day): | |
132 | """Given an amount of progress through the day or night, draw the | |
133 | background colour and overlay a blurred sun/moon.""" | |
134 | ||
135 | # x-coordinate for sun/moon | |
136 | x = x_from_sun_moon_time(progress, period, WIDTH) | |
137 | ||
138 | # If it's day, then move right to left | |
139 | if day: | |
140 | x = WIDTH - x | |
141 | ||
142 | # Calculate position on sun/moon's curve | |
143 | centre = WIDTH / 2 | |
144 | y = calculate_y_pos(x, centre) | |
145 | ||
146 | # Background colour | |
147 | background = map_colour(x, 80, mid_hue, day_hue, day) | |
148 | ||
149 | # New image for background colour | |
150 | img = Image.new('RGBA', (WIDTH, HEIGHT), color=background) | |
151 | draw = ImageDraw.Draw(img) | |
152 | ||
153 | # New image for sun/moon overlay | |
154 | overlay = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0)) | |
155 | overlay_draw = ImageDraw.Draw(overlay) | |
156 | ||
157 | # Draw the sun/moon | |
158 | circle = circle_coordinates(x, y, sun_radius) | |
159 | overlay_draw.ellipse(circle, fill=(200, 200, 50, opacity)) | |
160 | ||
161 | # Overlay the sun/moon on the background as an alpha matte | |
162 | composite = Image.alpha_composite(img, overlay).filter(ImageFilter.GaussianBlur(radius=blur)) | |
163 | ||
164 | return composite | |
165 | ||
166 | ||
167 | def overlay_text(img, position, text, font, align_right=False, rectangle=False): | |
168 | draw = ImageDraw.Draw(img) | |
169 | w, h = font.getsize(text) | |
170 | if align_right: | |
171 | x, y = position | |
172 | x -= w | |
173 | position = (x, y) | |
174 | if rectangle: | |
175 | x += 1 | |
176 | y += 1 | |
177 | position = (x, y) | |
178 | border = 1 | |
179 | rect = (x - border, y, x + w, y + h + border) | |
180 | rect_img = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0)) | |
181 | rect_draw = ImageDraw.Draw(rect_img) | |
182 | rect_draw.rectangle(rect, (255, 255, 255)) | |
183 | rect_draw.text(position, text, font=font, fill=(0, 0, 0, 0)) | |
184 | img = Image.alpha_composite(img, rect_img) | |
185 | else: | |
186 | draw.text(position, text, font=font, fill=(255, 255, 255)) | |
187 | return img | |
188 | ||
189 | ||
190 | def get_cpu_temperature(): | |
191 | with open("/sys/class/thermal/thermal_zone0/temp", "r") as f: | |
192 | temp = f.read() | |
193 | temp = int(temp) / 1000.0 | |
194 | return temp | |
195 | ||
196 | ||
197 | def correct_humidity(humidity, temperature, corr_temperature): | |
198 | dewpoint = temperature - ((100 - humidity) / 5) | |
199 | corr_humidity = 100 - (5 * (corr_temperature - dewpoint)) | |
200 | return min(100, corr_humidity) | |
201 | ||
202 | ||
203 | def analyse_pressure(pressure, t): | |
204 | global time_vals, pressure_vals, trend | |
205 | if len(pressure_vals) > num_vals: | |
206 | pressure_vals = pressure_vals[1:] + [pressure] | |
207 | time_vals = time_vals[1:] + [t] | |
208 | ||
209 | # Calculate line of best fit | |
210 | line = numpy.polyfit(time_vals, pressure_vals, 1, full=True) | |
211 | ||
212 | # Calculate slope, variance, and confidence | |
213 | slope = line[0][0] | |
214 | intercept = line[0][1] | |
215 | variance = numpy.var(pressure_vals) | |
216 | residuals = numpy.var([(slope * x + intercept - y) for x, y in zip(time_vals, pressure_vals)]) | |
217 | r_squared = 1 - residuals / variance | |
218 | ||
219 | # Calculate change in pressure per hour | |
220 | change_per_hour = slope * 60 * 60 | |
221 | variance_per_hour = variance * 60 * 60 | |
222 | ||
223 | mean_pressure = numpy.mean(pressure_vals) | |
224 | ||
225 | # Calculate trend | |
226 | if r_squared > 0.5: | |
227 | if change_per_hour > 0.5: | |
228 | trend = ">" | |
229 | elif change_per_hour < -0.5: | |
230 | trend = "<" | |
231 | elif -0.5 <= change_per_hour <= 0.5: | |
232 | trend = "-" | |
233 | ||
234 | if trend != "-": | |
235 | if abs(change_per_hour) > 3: | |
236 | trend *= 2 | |
237 | else: | |
238 | pressure_vals.append(pressure) | |
239 | time_vals.append(t) | |
240 | mean_pressure = numpy.mean(pressure_vals) | |
241 | change_per_hour = 0 | |
242 | trend = "-" | |
243 | ||
244 | # time.sleep(interval) | |
245 | ||
246 | return (mean_pressure, change_per_hour, trend) | |
247 | ||
248 | def describe_pressure(pressure): | |
249 | """Convert pressure into barometer-type description.""" | |
250 | if pressure < 970: | |
251 | description = "storm" | |
252 | elif 970 <= pressure < 990: | |
253 | description = "rain" | |
254 | elif 990 <= pressure < 1010: | |
255 | description = "change" | |
256 | elif 1010 <= pressure < 1030: | |
257 | description = "fair" | |
258 | elif pressure >= 1030: | |
259 | description = "dry" | |
260 | else: | |
261 | description = "" | |
262 | return description | |
263 | ||
264 | ||
265 | def describe_humidity(humidity): | |
266 | """Convert relative humidity into good/bad description.""" | |
267 | if 40 < humidity < 60: | |
268 | description = "good" | |
269 | else: | |
270 | description = "bad" | |
271 | return description | |
272 | ||
273 | ||
274 | def describe_light(light): | |
275 | """Convert light level in lux to descriptive value.""" | |
276 | if light < 50: | |
277 | description = "dark" | |
278 | elif 50 <= light < 100: | |
279 | description = "dim" | |
280 | elif 100 <= light < 500: | |
281 | description = "light" | |
282 | elif light >= 500: | |
283 | description = "bright" | |
284 | return description | |
285 | ||
286 | ||
287 | # Initialise the LCD | |
288 | disp = ST7735.ST7735( | |
289 | port=0, | |
290 | cs=1, | |
291 | dc=9, | |
292 | backlight=12, | |
293 | rotation=270, | |
294 | spi_speed_hz=10000000 | |
295 | ) | |
296 | ||
297 | disp.begin() | |
298 | ||
299 | WIDTH = disp.width | |
300 | HEIGHT = disp.height | |
301 | ||
302 | # The city and timezone that you want to display. | |
303 | city_name = "Sheffield" | |
304 | time_zone = "Europe/London" | |
305 | ||
306 | # Values that alter the look of the background | |
307 | blur = 50 | |
308 | opacity = 125 | |
309 | ||
310 | mid_hue = 0 | |
311 | day_hue = 25 | |
312 | ||
313 | sun_radius = 50 | |
314 | ||
315 | # Fonts | |
316 | font_sm = ImageFont.truetype(UserFont, 12) | |
317 | font_lg = ImageFont.truetype(UserFont, 14) | |
318 | ||
319 | # Margins | |
320 | margin = 3 | |
321 | ||
322 | dt = datetime.now() | |
323 | ||
324 | # Set up BME280 weather sensor | |
325 | bus = SMBus(1) | |
326 | bme280 = BME280(i2c_dev=bus) | |
327 | ||
20442c9a | 328 | min_temp = None |
329 | max_temp = None | |
2fe226f8 | 330 | |
331 | factor = 2.25 | |
332 | cpu_temps = [get_cpu_temperature()] * 5 | |
333 | ||
334 | # Set up light sensor | |
335 | ltr559 = LTR559() | |
336 | ||
337 | # Pressure variables | |
338 | pressure_vals = [] | |
339 | time_vals = [] | |
340 | num_vals = 1000 | |
341 | interval = 1 | |
342 | trend = "-" | |
343 | ||
20442c9a | 344 | # Keep track of time elapsed |
345 | start_time = time.time() | |
346 | ||
2fe226f8 | 347 | while True: |
20442c9a | 348 | path = os.path.dirname(os.path.realpath(__file__)) |
2fe226f8 | 349 | dt = datetime.now() |
2fe226f8 | 350 | progress, period, day = sun_moon_time(dt, city_name, time_zone) |
351 | background = draw_background(progress, period, day) | |
352 | ||
353 | # Time. | |
20442c9a | 354 | time_elapsed = time.time() - start_time |
2fe226f8 | 355 | date_string = dt.strftime("%d %b %y").lstrip('0') |
356 | time_string = dt.strftime("%H:%M") | |
357 | img = overlay_text(background, (0 + margin, 0 + margin), time_string, font_lg) | |
358 | img = overlay_text(img, (WIDTH - margin, 0 + margin), date_string, font_lg, align_right=True) | |
359 | ||
360 | # Temperature | |
361 | temperature = bme280.get_temperature() | |
362 | ||
363 | # Corrected temperature | |
364 | cpu_temp = get_cpu_temperature() | |
365 | cpu_temps = cpu_temps[1:] + [cpu_temp] | |
366 | avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps)) | |
367 | corr_temperature = temperature - ((avg_cpu_temp - temperature) / factor) | |
368 | ||
20442c9a | 369 | if time_elapsed > 30: |
370 | if min_temp is not None and max_temp is not None: | |
371 | if corr_temperature < min_temp: | |
372 | min_temp = corr_temperature | |
373 | elif corr_temperature > max_temp: | |
374 | max_temp = corr_temperature | |
375 | else: | |
376 | min_temp = corr_temperature | |
377 | max_temp = corr_temperature | |
2fe226f8 | 378 | |
379 | temp_string = f"{corr_temperature:.0f}°C" | |
380 | img = overlay_text(img, (68, 18), temp_string, font_lg, align_right=True) | |
381 | spacing = font_lg.getsize(temp_string)[1] + 1 | |
20442c9a | 382 | if min_temp is not None and max_temp is not None: |
383 | range_string = f"{min_temp:.0f}-{max_temp:.0f}" | |
384 | else: | |
385 | range_string = "------" | |
2fe226f8 | 386 | img = overlay_text(img, (68, 18 + spacing), range_string, font_sm, align_right=True, rectangle=True) |
20442c9a | 387 | temp_icon = Image.open(path + "/icons/temperature.png") |
2fe226f8 | 388 | img.paste(temp_icon, (margin, 18), mask=temp_icon) |
389 | ||
390 | # Humidity | |
391 | humidity = bme280.get_humidity() | |
392 | corr_humidity = correct_humidity(humidity, temperature, corr_temperature) | |
393 | humidity_string = f"{corr_humidity:.0f}%" | |
394 | img = overlay_text(img, (68, 48), humidity_string, font_lg, align_right=True) | |
395 | spacing = font_lg.getsize(humidity_string)[1] + 1 | |
396 | humidity_desc = describe_humidity(corr_humidity).upper() | |
397 | img = overlay_text(img, (68, 48 + spacing), humidity_desc, font_sm, align_right=True, rectangle=True) | |
20442c9a | 398 | humidity_icon = Image.open(path + "/icons/humidity-" + humidity_desc.lower() + ".png") |
2fe226f8 | 399 | img.paste(humidity_icon, (margin, 48), mask=humidity_icon) |
400 | ||
401 | # Light | |
402 | light = ltr559.get_lux() | |
403 | light_string = f"{int(light):,}" | |
404 | img = overlay_text(img, (WIDTH - margin, 18), light_string, font_lg, align_right=True) | |
405 | spacing = font_lg.getsize(light_string.replace(",", ""))[1] + 1 | |
406 | light_desc = describe_light(light).upper() | |
407 | img = overlay_text(img, (WIDTH - margin - 1, 18 + spacing), light_desc, font_sm, align_right=True, rectangle=True) | |
20442c9a | 408 | light_icon = Image.open(path + "/icons/bulb-" + light_desc.lower() + ".png") |
2fe226f8 | 409 | img.paste(humidity_icon, (80, 18), mask=light_icon) |
410 | ||
411 | # Pressure | |
412 | pressure = bme280.get_pressure() | |
413 | t = time.time() | |
414 | mean_pressure, change_per_hour, trend = analyse_pressure(pressure, t) | |
415 | pressure_string = f"{int(mean_pressure):,} {trend}" | |
416 | img = overlay_text(img, (WIDTH - margin, 48), pressure_string, font_lg, align_right=True) | |
417 | pressure_desc = describe_pressure(mean_pressure).upper() | |
418 | spacing = font_lg.getsize(pressure_string.replace(",", ""))[1] + 1 | |
419 | img = overlay_text(img, (WIDTH - margin - 1, 48 + spacing), pressure_desc, font_sm, align_right=True, rectangle=True) | |
20442c9a | 420 | pressure_icon = Image.open(path + "/icons/weather-" + pressure_desc.lower() + ".png") |
2fe226f8 | 421 | img.paste(pressure_icon, (80, 48), mask=pressure_icon) |
422 | ||
423 | # Display image | |
424 | disp.display(img) |