Commit | Line | Data |
---|---|---|
df20089d SM |
1 | #!/usr/bin/env python3 |
2 | ||
20442c9a | 3 | import os |
2fe226f8 | 4 | import time |
5 | import numpy | |
6 | import colorsys | |
7 | from PIL import Image, ImageDraw, ImageFont, ImageFilter | |
8 | from fonts.ttf import RobotoMedium as UserFont | |
9 | ||
10 | import ST7735 | |
11 | from bme280 import BME280 | |
12 | from ltr559 import LTR559 | |
13 | ||
14 | import pytz | |
7614d188 | 15 | from pytz import timezone |
20442c9a | 16 | from astral.geocoder import database, lookup |
17 | from astral.sun import sun | |
2fe226f8 | 18 | from datetime import datetime, timedelta |
19 | ||
20 | try: | |
21 | from smbus2 import SMBus | |
22 | except ImportError: | |
23 | from smbus import SMBus | |
24 | ||
25 | ||
26 | def calculate_y_pos(x, centre): | |
27 | """Calculates the y-coordinate on a parabolic curve, given x.""" | |
28 | centre = 80 | |
29 | y = 1 / centre * (x - centre) ** 2 | |
30 | ||
31 | return int(y) | |
32 | ||
33 | ||
34 | def circle_coordinates(x, y, radius): | |
35 | """Calculates the bounds of a circle, given centre and radius.""" | |
36 | ||
37 | x1 = x - radius # Left | |
38 | x2 = x + radius # Right | |
39 | y1 = y - radius # Bottom | |
40 | y2 = y + radius # Top | |
41 | ||
42 | return (x1, y1, x2, y2) | |
43 | ||
44 | ||
45 | def map_colour(x, centre, start_hue, end_hue, day): | |
46 | """Given an x coordinate and a centre point, a start and end hue (in degrees), | |
47 | and a Boolean for day or night (day is True, night False), calculate a colour | |
48 | hue representing the 'colour' of that time of day.""" | |
49 | ||
50 | start_hue = start_hue / 360 # Rescale to between 0 and 1 | |
51 | end_hue = end_hue / 360 | |
52 | ||
53 | sat = 1.0 | |
54 | ||
55 | # Dim the brightness as you move from the centre to the edges | |
56 | val = 1 - (abs(centre - x) / (2 * centre)) | |
57 | ||
58 | # Ramp up towards centre, then back down | |
59 | if x > centre: | |
60 | x = (2 * centre) - x | |
61 | ||
62 | # Calculate the hue | |
63 | hue = start_hue + ((x / centre) * (end_hue - start_hue)) | |
64 | ||
65 | # At night, move towards purple/blue hues and reverse dimming | |
66 | if not day: | |
67 | hue = 1 - hue | |
68 | val = 1 - val | |
69 | ||
70 | r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(hue, sat, val)] | |
71 | ||
72 | return (r, g, b) | |
73 | ||
74 | ||
75 | def x_from_sun_moon_time(progress, period, x_range): | |
76 | """Recalculate/rescale an amount of progress through a time period.""" | |
77 | ||
78 | x = int((progress / period) * x_range) | |
79 | ||
80 | return x | |
81 | ||
82 | ||
7614d188 | 83 | def sun_moon_time(city_name, time_zone): |
2fe226f8 | 84 | """Calculate the progress through the current sun/moon period (i.e day or |
85 | night) from the last sunrise or sunset, given a datetime object 't'.""" | |
86 | ||
20442c9a | 87 | city = lookup(city_name, database()) |
2fe226f8 | 88 | |
89 | # Datetime objects for yesterday, today, tomorrow | |
7614d188 RF |
90 | utc = pytz.utc |
91 | utc_dt = datetime.now(tz=utc) | |
92 | local_dt = utc_dt.astimezone(pytz.timezone(time_zone)) | |
93 | today = local_dt.date() | |
2fe226f8 | 94 | yesterday = today - timedelta(1) |
95 | tomorrow = today + timedelta(1) | |
96 | ||
7614d188 | 97 | # Sun objects for yesterday, today, tomorrow |
20442c9a | 98 | sun_yesterday = sun(city.observer, date=yesterday) |
99 | sun_today = sun(city.observer, date=today) | |
100 | sun_tomorrow = sun(city.observer, date=tomorrow) | |
2fe226f8 | 101 | |
102 | # Work out sunset yesterday, sunrise/sunset today, and sunrise tomorrow | |
103 | sunset_yesterday = sun_yesterday["sunset"] | |
20442c9a | 104 | sunrise_today = sun_today["sunrise"] |
105 | sunset_today = sun_today["sunset"] | |
2fe226f8 | 106 | sunrise_tomorrow = sun_tomorrow["sunrise"] |
107 | ||
108 | # Work out lengths of day or night period and progress through period | |
7614d188 | 109 | if sunrise_today < local_dt < sunset_today: |
2fe226f8 | 110 | day = True |
111 | period = sunset_today - sunrise_today | |
be4d0fc9 | 112 | # mid = sunrise_today + (period / 2) |
7614d188 | 113 | progress = local_dt - sunrise_today |
2fe226f8 | 114 | |
7614d188 | 115 | elif local_dt > sunset_today: |
2fe226f8 | 116 | day = False |
117 | period = sunrise_tomorrow - sunset_today | |
be4d0fc9 | 118 | # mid = sunset_today + (period / 2) |
7614d188 | 119 | progress = local_dt - sunset_today |
2fe226f8 | 120 | |
121 | else: | |
122 | day = False | |
123 | period = sunrise_today - sunset_yesterday | |
be4d0fc9 | 124 | # mid = sunset_yesterday + (period / 2) |
7614d188 | 125 | progress = local_dt - sunset_yesterday |
2fe226f8 | 126 | |
127 | # Convert time deltas to seconds | |
128 | progress = progress.total_seconds() | |
129 | period = period.total_seconds() | |
130 | ||
7614d188 | 131 | return (progress, period, day, local_dt) |
2fe226f8 | 132 | |
133 | ||
134 | def draw_background(progress, period, day): | |
135 | """Given an amount of progress through the day or night, draw the | |
136 | background colour and overlay a blurred sun/moon.""" | |
137 | ||
138 | # x-coordinate for sun/moon | |
139 | x = x_from_sun_moon_time(progress, period, WIDTH) | |
140 | ||
141 | # If it's day, then move right to left | |
142 | if day: | |
143 | x = WIDTH - x | |
144 | ||
7614d188 | 145 | # Calculate position on sun/moon's curve |
2fe226f8 | 146 | centre = WIDTH / 2 |
147 | y = calculate_y_pos(x, centre) | |
148 | ||
149 | # Background colour | |
150 | background = map_colour(x, 80, mid_hue, day_hue, day) | |
151 | ||
152 | # New image for background colour | |
153 | img = Image.new('RGBA', (WIDTH, HEIGHT), color=background) | |
be4d0fc9 | 154 | # draw = ImageDraw.Draw(img) |
2fe226f8 | 155 | |
156 | # New image for sun/moon overlay | |
157 | overlay = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0)) | |
158 | overlay_draw = ImageDraw.Draw(overlay) | |
159 | ||
160 | # Draw the sun/moon | |
161 | circle = circle_coordinates(x, y, sun_radius) | |
162 | overlay_draw.ellipse(circle, fill=(200, 200, 50, opacity)) | |
163 | ||
164 | # Overlay the sun/moon on the background as an alpha matte | |
165 | composite = Image.alpha_composite(img, overlay).filter(ImageFilter.GaussianBlur(radius=blur)) | |
166 | ||
167 | return composite | |
168 | ||
169 | ||
170 | def overlay_text(img, position, text, font, align_right=False, rectangle=False): | |
171 | draw = ImageDraw.Draw(img) | |
172 | w, h = font.getsize(text) | |
173 | if align_right: | |
174 | x, y = position | |
175 | x -= w | |
176 | position = (x, y) | |
177 | if rectangle: | |
178 | x += 1 | |
179 | y += 1 | |
180 | position = (x, y) | |
181 | border = 1 | |
182 | rect = (x - border, y, x + w, y + h + border) | |
183 | rect_img = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0)) | |
184 | rect_draw = ImageDraw.Draw(rect_img) | |
185 | rect_draw.rectangle(rect, (255, 255, 255)) | |
186 | rect_draw.text(position, text, font=font, fill=(0, 0, 0, 0)) | |
187 | img = Image.alpha_composite(img, rect_img) | |
188 | else: | |
189 | draw.text(position, text, font=font, fill=(255, 255, 255)) | |
190 | return img | |
191 | ||
192 | ||
193 | def get_cpu_temperature(): | |
194 | with open("/sys/class/thermal/thermal_zone0/temp", "r") as f: | |
195 | temp = f.read() | |
196 | temp = int(temp) / 1000.0 | |
197 | return temp | |
198 | ||
199 | ||
200 | def correct_humidity(humidity, temperature, corr_temperature): | |
201 | dewpoint = temperature - ((100 - humidity) / 5) | |
202 | corr_humidity = 100 - (5 * (corr_temperature - dewpoint)) | |
203 | return min(100, corr_humidity) | |
204 | ||
205 | ||
206 | def analyse_pressure(pressure, t): | |
207 | global time_vals, pressure_vals, trend | |
208 | if len(pressure_vals) > num_vals: | |
209 | pressure_vals = pressure_vals[1:] + [pressure] | |
210 | time_vals = time_vals[1:] + [t] | |
211 | ||
212 | # Calculate line of best fit | |
213 | line = numpy.polyfit(time_vals, pressure_vals, 1, full=True) | |
214 | ||
215 | # Calculate slope, variance, and confidence | |
216 | slope = line[0][0] | |
217 | intercept = line[0][1] | |
218 | variance = numpy.var(pressure_vals) | |
be4d0fc9 | 219 | residuals = numpy.var([(slope * x + intercept - y) for x, y in zip(time_vals, pressure_vals)]) |
2fe226f8 | 220 | r_squared = 1 - residuals / variance |
221 | ||
222 | # Calculate change in pressure per hour | |
223 | change_per_hour = slope * 60 * 60 | |
be4d0fc9 | 224 | # variance_per_hour = variance * 60 * 60 |
2fe226f8 | 225 | |
226 | mean_pressure = numpy.mean(pressure_vals) | |
227 | ||
228 | # Calculate trend | |
229 | if r_squared > 0.5: | |
230 | if change_per_hour > 0.5: | |
231 | trend = ">" | |
232 | elif change_per_hour < -0.5: | |
233 | trend = "<" | |
234 | elif -0.5 <= change_per_hour <= 0.5: | |
235 | trend = "-" | |
236 | ||
237 | if trend != "-": | |
238 | if abs(change_per_hour) > 3: | |
239 | trend *= 2 | |
240 | else: | |
241 | pressure_vals.append(pressure) | |
242 | time_vals.append(t) | |
243 | mean_pressure = numpy.mean(pressure_vals) | |
244 | change_per_hour = 0 | |
245 | trend = "-" | |
246 | ||
be4d0fc9 | 247 | # time.sleep(interval) |
2fe226f8 | 248 | return (mean_pressure, change_per_hour, trend) |
249 | ||
be4d0fc9 | 250 | |
2fe226f8 | 251 | def describe_pressure(pressure): |
252 | """Convert pressure into barometer-type description.""" | |
253 | if pressure < 970: | |
254 | description = "storm" | |
255 | elif 970 <= pressure < 990: | |
256 | description = "rain" | |
257 | elif 990 <= pressure < 1010: | |
258 | description = "change" | |
259 | elif 1010 <= pressure < 1030: | |
260 | description = "fair" | |
261 | elif pressure >= 1030: | |
262 | description = "dry" | |
263 | else: | |
264 | description = "" | |
265 | return description | |
266 | ||
267 | ||
268 | def describe_humidity(humidity): | |
269 | """Convert relative humidity into good/bad description.""" | |
270 | if 40 < humidity < 60: | |
271 | description = "good" | |
272 | else: | |
273 | description = "bad" | |
274 | return description | |
275 | ||
276 | ||
277 | def describe_light(light): | |
278 | """Convert light level in lux to descriptive value.""" | |
279 | if light < 50: | |
280 | description = "dark" | |
281 | elif 50 <= light < 100: | |
282 | description = "dim" | |
283 | elif 100 <= light < 500: | |
284 | description = "light" | |
285 | elif light >= 500: | |
286 | description = "bright" | |
287 | return description | |
288 | ||
289 | ||
290 | # Initialise the LCD | |
291 | disp = ST7735.ST7735( | |
292 | port=0, | |
293 | cs=1, | |
294 | dc=9, | |
295 | backlight=12, | |
296 | rotation=270, | |
297 | spi_speed_hz=10000000 | |
298 | ) | |
299 | ||
300 | disp.begin() | |
301 | ||
302 | WIDTH = disp.width | |
303 | HEIGHT = disp.height | |
304 | ||
305 | # The city and timezone that you want to display. | |
306 | city_name = "Sheffield" | |
307 | time_zone = "Europe/London" | |
308 | ||
309 | # Values that alter the look of the background | |
310 | blur = 50 | |
311 | opacity = 125 | |
312 | ||
313 | mid_hue = 0 | |
314 | day_hue = 25 | |
315 | ||
316 | sun_radius = 50 | |
317 | ||
318 | # Fonts | |
319 | font_sm = ImageFont.truetype(UserFont, 12) | |
320 | font_lg = ImageFont.truetype(UserFont, 14) | |
321 | ||
322 | # Margins | |
323 | margin = 3 | |
324 | ||
2fe226f8 | 325 | |
326 | # Set up BME280 weather sensor | |
327 | bus = SMBus(1) | |
328 | bme280 = BME280(i2c_dev=bus) | |
329 | ||
20442c9a | 330 | min_temp = None |
331 | max_temp = None | |
2fe226f8 | 332 | |
333 | factor = 2.25 | |
334 | cpu_temps = [get_cpu_temperature()] * 5 | |
335 | ||
336 | # Set up light sensor | |
337 | ltr559 = LTR559() | |
338 | ||
339 | # Pressure variables | |
340 | pressure_vals = [] | |
341 | time_vals = [] | |
342 | num_vals = 1000 | |
343 | interval = 1 | |
344 | trend = "-" | |
345 | ||
20442c9a | 346 | # Keep track of time elapsed |
347 | start_time = time.time() | |
348 | ||
2fe226f8 | 349 | while True: |
20442c9a | 350 | path = os.path.dirname(os.path.realpath(__file__)) |
7614d188 | 351 | progress, period, day, local_dt = sun_moon_time(city_name, time_zone) |
2fe226f8 | 352 | background = draw_background(progress, period, day) |
353 | ||
354 | # Time. | |
20442c9a | 355 | time_elapsed = time.time() - start_time |
7614d188 RF |
356 | date_string = local_dt.strftime("%d %b %y").lstrip('0') |
357 | time_string = local_dt.strftime("%H:%M") | |
2fe226f8 | 358 | img = overlay_text(background, (0 + margin, 0 + margin), time_string, font_lg) |
359 | img = overlay_text(img, (WIDTH - margin, 0 + margin), date_string, font_lg, align_right=True) | |
360 | ||
361 | # Temperature | |
362 | temperature = bme280.get_temperature() | |
363 | ||
364 | # Corrected temperature | |
365 | cpu_temp = get_cpu_temperature() | |
366 | cpu_temps = cpu_temps[1:] + [cpu_temp] | |
367 | avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps)) | |
368 | corr_temperature = temperature - ((avg_cpu_temp - temperature) / factor) | |
369 | ||
20442c9a | 370 | if time_elapsed > 30: |
371 | if min_temp is not None and max_temp is not None: | |
372 | if corr_temperature < min_temp: | |
373 | min_temp = corr_temperature | |
374 | elif corr_temperature > max_temp: | |
375 | max_temp = corr_temperature | |
376 | else: | |
377 | min_temp = corr_temperature | |
378 | max_temp = corr_temperature | |
2fe226f8 | 379 | |
380 | temp_string = f"{corr_temperature:.0f}°C" | |
381 | img = overlay_text(img, (68, 18), temp_string, font_lg, align_right=True) | |
382 | spacing = font_lg.getsize(temp_string)[1] + 1 | |
20442c9a | 383 | if min_temp is not None and max_temp is not None: |
384 | range_string = f"{min_temp:.0f}-{max_temp:.0f}" | |
385 | else: | |
386 | range_string = "------" | |
2fe226f8 | 387 | img = overlay_text(img, (68, 18 + spacing), range_string, font_sm, align_right=True, rectangle=True) |
be4d0fc9 | 388 | temp_icon = Image.open(f"{path}/icons/temperature.png") |
2fe226f8 | 389 | img.paste(temp_icon, (margin, 18), mask=temp_icon) |
390 | ||
391 | # Humidity | |
392 | humidity = bme280.get_humidity() | |
393 | corr_humidity = correct_humidity(humidity, temperature, corr_temperature) | |
394 | humidity_string = f"{corr_humidity:.0f}%" | |
395 | img = overlay_text(img, (68, 48), humidity_string, font_lg, align_right=True) | |
396 | spacing = font_lg.getsize(humidity_string)[1] + 1 | |
397 | humidity_desc = describe_humidity(corr_humidity).upper() | |
398 | img = overlay_text(img, (68, 48 + spacing), humidity_desc, font_sm, align_right=True, rectangle=True) | |
be4d0fc9 | 399 | humidity_icon = Image.open(f"{path}/icons/humidity-{humidity_desc.lower()}.png") |
2fe226f8 | 400 | img.paste(humidity_icon, (margin, 48), mask=humidity_icon) |
401 | ||
402 | # Light | |
403 | light = ltr559.get_lux() | |
404 | light_string = f"{int(light):,}" | |
405 | img = overlay_text(img, (WIDTH - margin, 18), light_string, font_lg, align_right=True) | |
406 | spacing = font_lg.getsize(light_string.replace(",", ""))[1] + 1 | |
407 | light_desc = describe_light(light).upper() | |
408 | img = overlay_text(img, (WIDTH - margin - 1, 18 + spacing), light_desc, font_sm, align_right=True, rectangle=True) | |
be4d0fc9 | 409 | light_icon = Image.open(f"{path}/icons/bulb-{light_desc.lower()}.png") |
2fe226f8 | 410 | img.paste(humidity_icon, (80, 18), mask=light_icon) |
411 | ||
412 | # Pressure | |
413 | pressure = bme280.get_pressure() | |
414 | t = time.time() | |
415 | mean_pressure, change_per_hour, trend = analyse_pressure(pressure, t) | |
416 | pressure_string = f"{int(mean_pressure):,} {trend}" | |
417 | img = overlay_text(img, (WIDTH - margin, 48), pressure_string, font_lg, align_right=True) | |
418 | pressure_desc = describe_pressure(mean_pressure).upper() | |
419 | spacing = font_lg.getsize(pressure_string.replace(",", ""))[1] + 1 | |
420 | img = overlay_text(img, (WIDTH - margin - 1, 48 + spacing), pressure_desc, font_sm, align_right=True, rectangle=True) | |
be4d0fc9 | 421 | pressure_icon = Image.open(f"{path}/icons/weather-{pressure_desc.lower()}.png") |
2fe226f8 | 422 | img.paste(pressure_icon, (80, 48), mask=pressure_icon) |
423 | ||
424 | # Display image | |
425 | disp.display(img) |