2 # Desc: Pauses a random amount of time. Random distribution is inverse gaussian.
4 # Depends: python 3.7.3
5 # Usage: ./sleepRand.py [-v] [-p L] SECONDS
6 # Input: SECONDS: float seconds (mean of inverse gaussian distribution)
7 # L: precision (lambda of inverse gaussian distribution)
8 # Example: python3 sleepRand.py -vv -p 8.0 60.0
11 import math
, time
, random
, sys
;
14 # Set up argument parser (see https://docs.python.org/3.7/library/argparse.html )
15 parser
= argparse
.ArgumentParser(
16 description
='Delay activity for a random number of seconds. Delays sampled from an inverse gaussian distribution.',
17 epilog
="Author: Steven Baltakatei Sandoval. License: GPLv3+");
18 parser
.add_argument('-v','--verbose',
22 help='Verbose output. (repeat for increased verbosity)');
23 parser
.add_argument('mean',
29 help='Mean seconds of delay. Is the mean of the inverse gaussian distribution.');
30 parser
.add_argument('--precision','-p',
36 help='How concentrated delays are around the mean (default: 4.0). Must be a positive integer or floating point value. Is the lambda factor in the inverse gaussian distribution. High values (e.g. > 10.0) cause random delays to rarely stray far from MEAN. Small values (e.g. < 0.10) result in many small delays plus occasional long delays.');
37 args
= parser
.parse_args();
40 def setup_logging(verbosity
):
41 # Depends: module: argparse
42 # Ref/Attrib: Haas, Florian; Configure logging with argparse; https://xahteiwi.eu/resources/hints-and-kinks/python-cli-logging-options/
44 verbosity
= min(verbosity
, 2);
45 loglevel
= base_loglevel
- (verbosity
* 10);
46 logging
.basicConfig(level
=loglevel
,
47 format
='%(message)s');
49 def randInvGau(mu
, lam
):
50 """Returns random variate of inverse gaussian distribution"""
51 # input: mu: mean of inverse gaussian distribution
52 # lam: shape parameter
53 # output: float sampled from inv. gaus. with range 0 to infinity, mean mu
54 # example: sample = float(randInvGau(1.0,4.0));
55 # Ref/Attrib: Michael, John R. "Generating Random Variates Using Transformations with Multiple Roots" https://doi.org/10.2307/2683801
56 nu
= random
.gauss(0,1);
59 xTerm2
= mu
** 2 * y
/ (2 * lam
);
60 xTerm3
= (- mu
/ (2 * lam
)) * math
.sqrt(4 * mu
* lam
* y
+ mu
** 2 * y
** 2);
61 x
= xTerm1
+ xTerm2
+ xTerm3
;
62 z
= random
.uniform(0.0,1.0);
63 if z
<= (mu
/ (mu
+ x
)):
70 setup_logging(args
.verbosity
);
71 logging
.debug('DEBUG:Debug logging output enabled.');
72 logging
.debug('DEBUG:args.verbosity:' + str(args
.verbosity
));
73 logging
.debug('DEBUG:args:' + str(args
));
74 ## Reject negative floats.
77 desMean
= args
.mean
[0];
78 logging
.debug('DEBUG:Desired mean:' + str(desMean
));
79 ### Get lambda precision factor
80 lambdaFactor
= args
.precision
[0];
81 logging
.debug('DEBUG:Lambda precision factor:' + str(lambdaFactor
));
83 logging
.error('ERROR:Desired mean is negative:' + str(desMean
));
84 raise ValueError('Negative number error.');
86 logging
.error('ERROR:Lambda precision factor is negative:' + str(lambdaFactor
));
87 raise ValueError('Negative number error.');
92 delay
= randInvGau(desMean
, desMean
* lambdaFactor
);
93 logging
.debug('delay:' + str(delay
));
96 time
.sleep(float(delay
));
98 # Author: Steven Baltakatei Sandoal