X-Git-Url: https://zdv2.bktei.com/gitweb/EVA-2020-02-2.git/blobdiff_plain/8ab4cd2dbb0d51048f01e92a712e61d5da4fa120..4cbbc360566337406c8bf7b1d3b653d19b41ae4c:/library/enviroplus/noise.py?ds=sidebyside diff --git a/library/enviroplus/noise.py b/library/enviroplus/noise.py index e69de29..7b6d5e2 100644 --- a/library/enviroplus/noise.py +++ b/library/enviroplus/noise.py @@ -0,0 +1,90 @@ +import sounddevice +import numpy + + +class Noise(): + def __init__(self, + sample_rate=16000, + duration=0.5): + """Noise measurement. + + :param sample_rate: Sample rate in Hz + :param duraton: Duration, in seconds, of noise sample capture + + """ + + self.duration = duration + self.sample_rate = sample_rate + + def get_amplitudes_at_frequency_ranges(self, ranges): + """Return the mean amplitude of frequencies in the given ranges. + + :param ranges: List of ranges including a start and end range + + """ + recording = self._record() + magnitude = numpy.abs(numpy.fft.rfft(recording[:, 0], n=self.sample_rate)) + result = [] + for r in ranges: + start, end = r + result.append(numpy.mean(magnitude[start:end])) + return result + + def get_amplitude_at_frequency_range(self, start, end): + """Return the mean amplitude of frequencies in the specified range. + + :param start: Start frequency (in Hz) + :param end: End frequency (in Hz) + + """ + n = self.sample_rate // 2 + if start > n or end > n: + raise ValueError("Maxmimum frequency is {}".format(n)) + + recording = self._record() + magnitude = numpy.abs(numpy.fft.rfft(recording[:, 0], n=self.sample_rate)) + return numpy.mean(magnitude[start:end]) + + def get_noise_profile(self, + noise_floor=100, + low=0.12, + mid=0.36, + high=None): + """Returns a noise charateristic profile. + + Bins all frequencies into 3 weighted groups expressed as a percentage of the total frequency range. + + :param noise_floor: "High-pass" frequency, exclude frequencies below this value + :param low: Percentage of frequency ranges to count in the low bin (as a float, 0.5 = 50%) + :param mid: Percentage of frequency ranges to count in the mid bin (as a float, 0.5 = 50%) + :param high: Optional percentage for high bin, effectively creates a "Low-pass" if total percentage is less than 100% + + """ + + if high is None: + high = 1.0 - low - mid + + recording = self._record() + magnitude = numpy.abs(numpy.fft.rfft(recording[:, 0], n=self.sample_rate)) + + sample_count = (self.sample_rate // 2) - noise_floor + + mid_start = noise_floor + int(sample_count * low) + high_start = mid_start + int(sample_count * mid) + noise_ceiling = high_start + int(sample_count * high) + + amp_low = numpy.mean(magnitude[noise_floor:mid_start]) + amp_mid = numpy.mean(magnitude[mid_start:high_start]) + amp_high = numpy.mean(magnitude[high_start:noise_ceiling]) + amp_total = (amp_low + amp_mid + amp_high) / 3.0 + + return amp_low, amp_mid, amp_high, amp_total + + def _record(self): + return sounddevice.rec( + int(self.duration * self.sample_rate), + samplerate=self.sample_rate, + blocking=True, + channels=1, + dtype='float64' + )