import time
import colorsys
-import os
import sys
import ST7735
try:
import ltr559
from bme280 import BME280
-from pms5003 import PMS5003, ReadTimeoutError as pmsReadTimeoutError
+from pms5003 import PMS5003, ReadTimeoutError as pmsReadTimeoutError, SerialTimeoutError
from enviroplus import gas
from subprocess import PIPE, Popen
from PIL import Image
# PMS5003 particulate sensor
pms5003 = PMS5003()
+time.sleep(1.0)
# Create ST7735 LCD display class
st7735 = ST7735.ST7735(
# with NO WARRANTY. The authors of this example code claim
# NO RESPONSIBILITY if reliance on the following values or this
# code in general leads to ANY DAMAGES or DEATH.
-limits = [[4,18,28,35],
- [250,650,1013.25,1015],
- [20,30,60,70],
- [-1,-1,30000,100000],
- [-1,-1,40,50],
- [-1,-1,450,550],
- [-1,-1,200,300],
- [-1,-1,50,100],
- [-1,-1,50,100],
- [-1,-1,50,100]]
+limits = [[4, 18, 28, 35],
+ [250, 650, 1013.25, 1015],
+ [20, 30, 60, 70],
+ [-1, -1, 30000, 100000],
+ [-1, -1, 40, 50],
+ [-1, -1, 450, 550],
+ [-1, -1, 200, 300],
+ [-1, -1, 50, 100],
+ [-1, -1, 50, 100],
+ [-1, -1, 50, 100]]
# RGB palette for values on the combined screen
-palette = [(0,0,255), # Dangerously Low
- (0,255,255), # Low
- (0,255,0), # Normal
- (255,255,0), # High
- (255,0,0)] # Dangerously High
+palette = [(0, 0, 255), # Dangerously Low
+ (0, 255, 255), # Low
+ (0, 255, 0), # Normal
+ (255, 255, 0), # High
+ (255, 0, 0)] # Dangerously High
values = {}
# Maintain length of list
values[variable] = values[variable][1:] + [data]
# Scale the values for the variable between 0 and 1
- colours = [(v - min(values[variable]) + 1) / (max(values[variable])
- - min(values[variable]) + 1) for v in values[variable]]
+ vmin = min(values[variable])
+ vmax = max(values[variable])
+ colours = [(v - vmin + 1) / (vmax - vmin + 1) for v in values[variable]]
# Format the variable name and value
message = "{}: {:.1f} {}".format(variable[:4], data, unit)
logging.info(message)
for i in range(len(colours)):
# Convert the values to colours from red to blue
colour = (1.0 - colours[i]) * 0.6
- r, g, b = [int(x * 255.0) for x in colorsys.hsv_to_rgb(colour,
- 1.0, 1.0)]
+ r, g, b = [int(x * 255.0) for x in colorsys.hsv_to_rgb(colour, 1.0, 1.0)]
# Draw a 1-pixel wide rectangle of colour
- draw.rectangle((i, top_pos, i+1, HEIGHT), (r, g, b))
+ draw.rectangle((i, top_pos, i + 1, HEIGHT), (r, g, b))
# Draw a line graph in black
- line_y = HEIGHT - (top_pos + (colours[i] * (HEIGHT - top_pos)))\
- + top_pos
- draw.rectangle((i, line_y, i+1, line_y+1), (0, 0, 0))
+ line_y = HEIGHT - (top_pos + (colours[i] * (HEIGHT - top_pos))) + top_pos
+ draw.rectangle((i, line_y, i + 1, line_y + 1), (0, 0, 0))
# Write the text at the top in black
draw.text((0, 0), message, font=font, fill=(0, 0, 0))
st7735.display(img)
+
# Saves the data to be used in the graphs later and prints to the log
def save_data(idx, data):
variable = variables[idx]
def display_everything():
draw.rectangle((0, 0, WIDTH, HEIGHT), (0, 0, 0))
column_count = 2
- row_count = (len(variables)/column_count)
+ row_count = (len(variables) / column_count)
for i in range(len(variables)):
variable = variables[i]
data_value = values[variable][-1]
unit = units[i]
- x = x_offset + ((WIDTH/column_count) * (i / row_count))
- y = y_offset + ((HEIGHT/row_count) * (i % row_count))
+ x = x_offset + ((WIDTH / column_count) * (i / row_count))
+ y = y_offset + ((HEIGHT / row_count) * (i % row_count))
message = "{}: {:.1f} {}".format(variable[:4], data_value, unit)
lim = limits[i]
rgb = palette[0]
for j in range(len(lim)):
if data_value > lim[j]:
- rgb = palette[j+1]
+ rgb = palette[j + 1]
draw.text((x, y), message, font=smallfont, fill=rgb)
st7735.display(img)
-
# Get the temperature of the CPU for compensation
def get_cpu_temperature():
process = Popen(['vcgencmd', 'measure_temp'], stdout=PIPE, universal_newlines=True)
return float(output[output.index('=') + 1:output.rindex("'")])
-# Tuning factor for compensation. Decrease this number to adjust the
-# temperature down, and increase to adjust up
-factor = 2.25
-
-cpu_temps = [get_cpu_temperature()] * 5
-
-delay = 0.5 # Debounce the proximity tap
-mode = 10 # The starting mode
-last_page = 0
-light = 1
+def main():
+ # Tuning factor for compensation. Decrease this number to adjust the
+ # temperature down, and increase to adjust up
+ factor = 2.25
+
+ cpu_temps = [get_cpu_temperature()] * 5
+
+ delay = 0.5 # Debounce the proximity tap
+ mode = 10 # The starting mode
+ last_page = 0
+
+ for v in variables:
+ values[v] = [1] * WIDTH
+
+ # The main loop
+ try:
+ while True:
+ proximity = ltr559.get_proximity()
+
+ # If the proximity crosses the threshold, toggle the mode
+ if proximity > 1500 and time.time() - last_page > delay:
+ mode += 1
+ mode %= (len(variables) + 1)
+ last_page = time.time()
+
+ # One mode for each variable
+ if mode == 0:
+ # variable = "temperature"
+ unit = "C"
+ cpu_temp = get_cpu_temperature()
+ # Smooth out with some averaging to decrease jitter
+ cpu_temps = cpu_temps[1:] + [cpu_temp]
+ avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps))
+ raw_temp = bme280.get_temperature()
+ data = raw_temp - ((avg_cpu_temp - raw_temp) / factor)
+ display_text(variables[mode], data, unit)
-for v in variables:
- values[v] = [1] * WIDTH
+ if mode == 1:
+ # variable = "pressure"
+ unit = "hPa"
+ data = bme280.get_pressure()
+ display_text(variables[mode], data, unit)
-# The main loop
-try:
- while True:
- proximity = ltr559.get_proximity()
-
- # If the proximity crosses the threshold, toggle the mode
- if proximity > 1500 and time.time() - last_page > delay:
- mode += 1
- mode %= (len(variables)+1)
- last_page = time.time()
-
- # One mode for each variable
- if mode == 0:
- # variable = "temperature"
- unit = "C"
- cpu_temp = get_cpu_temperature()
- # Smooth out with some averaging to decrease jitter
- cpu_temps = cpu_temps[1:] + [cpu_temp]
- avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps))
- raw_temp = bme280.get_temperature()
- data = raw_temp - ((avg_cpu_temp - raw_temp) / factor)
- display_text(variables[mode], data, unit)
-
- if mode == 1:
- # variable = "pressure"
- unit = "hPa"
- data = bme280.get_pressure()
- display_text(variables[mode], data, unit)
-
- if mode == 2:
- # variable = "humidity"
- unit = "%"
- data = bme280.get_humidity()
- display_text(variables[mode], data, unit)
-
- if mode == 3:
- # variable = "light"
- unit = "Lux"
- if proximity < 10:
- data = ltr559.get_lux()
- else:
- data = 1
- display_text(variables[mode], data, unit)
-
- if mode == 4:
- # variable = "oxidised"
- unit = "kO"
- data = gas.read_all()
- data = data.oxidising / 1000
- display_text(variables[mode], data, unit)
-
- if mode == 5:
- # variable = "reduced"
- unit = "kO"
- data = gas.read_all()
- data = data.reducing / 1000
- display_text(variables[mode], data, unit)
-
- if mode == 6:
- # variable = "nh3"
- unit = "kO"
- data = gas.read_all()
- data = data.nh3 / 1000
- display_text(variables[mode], data, unit)
-
- if mode == 7:
- # variable = "pm1"
- unit = "ug/m3"
- try:
- data = pms5003.read()
- except pmsReadTimeoutError:
- logging.warn("Failed to read PMS5003")
- else:
- data = float(data.pm_ug_per_m3(1.0))
+ if mode == 2:
+ # variable = "humidity"
+ unit = "%"
+ data = bme280.get_humidity()
display_text(variables[mode], data, unit)
- if mode == 8:
- # variable = "pm25"
- unit = "ug/m3"
- try:
- data = pms5003.read()
- except pmsReadTimeoutError:
- logging.warn("Failed to read PMS5003")
- else:
- data = float(data.pm_ug_per_m3(2.5))
+ if mode == 3:
+ # variable = "light"
+ unit = "Lux"
+ if proximity < 10:
+ data = ltr559.get_lux()
+ else:
+ data = 1
display_text(variables[mode], data, unit)
- if mode == 9:
- # variable = "pm10"
- unit = "ug/m3"
- try:
- data = pms5003.read()
- except pmsReadTimeoutError:
- logging.warn("Failed to read PMS5003")
- else:
- data = float(data.pm_ug_per_m3(10))
+ if mode == 4:
+ # variable = "oxidised"
+ unit = "kO"
+ data = gas.read_all()
+ data = data.oxidising / 1000
display_text(variables[mode], data, unit)
- if mode == 10:
- # Everything on one screen
- cpu_temp = get_cpu_temperature()
- # Smooth out with some averaging to decrease jitter
- cpu_temps = cpu_temps[1:] + [cpu_temp]
- avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps))
- raw_temp = bme280.get_temperature()
- raw_data = raw_temp - ((avg_cpu_temp - raw_temp) / factor)
- save_data(0, raw_data)
- display_everything()
- raw_data = bme280.get_pressure()
- save_data(1, raw_data)
- display_everything()
- raw_data = bme280.get_humidity()
- save_data(2, raw_data)
- if proximity < 10:
- raw_data = ltr559.get_lux()
- else:
- raw_data = 1
- save_data(3, raw_data)
- display_everything()
- gas_data = gas.read_all()
- save_data(4, gas_data.oxidising / 1000)
- save_data(5, gas_data.reducing / 1000)
- save_data(6, gas_data.nh3 / 1000)
- display_everything()
- pms_data = None
- try:
- pms_data = pms5003.read()
- except pmsReadTimeoutError:
- logging.warn("Failed to read PMS5003")
- else:
- save_data(7, float(pms_data.pm_ug_per_m3(1.0)))
- save_data(8, float(pms_data.pm_ug_per_m3(2.5)))
- save_data(9, float(pms_data.pm_ug_per_m3(10)))
- display_everything()
+ if mode == 5:
+ # variable = "reduced"
+ unit = "kO"
+ data = gas.read_all()
+ data = data.reducing / 1000
+ display_text(variables[mode], data, unit)
+ if mode == 6:
+ # variable = "nh3"
+ unit = "kO"
+ data = gas.read_all()
+ data = data.nh3 / 1000
+ display_text(variables[mode], data, unit)
-# Exit cleanly
-except KeyboardInterrupt:
- sys.exit(0)
+ if mode == 7:
+ # variable = "pm1"
+ unit = "ug/m3"
+ try:
+ data = pms5003.read()
+ except pmsReadTimeoutError:
+ logging.warning("Failed to read PMS5003")
+ else:
+ data = float(data.pm_ug_per_m3(1.0))
+ display_text(variables[mode], data, unit)
+
+ if mode == 8:
+ # variable = "pm25"
+ unit = "ug/m3"
+ try:
+ data = pms5003.read()
+ except pmsReadTimeoutError:
+ logging.warning("Failed to read PMS5003")
+ else:
+ data = float(data.pm_ug_per_m3(2.5))
+ display_text(variables[mode], data, unit)
+
+ if mode == 9:
+ # variable = "pm10"
+ unit = "ug/m3"
+ try:
+ data = pms5003.read()
+ except pmsReadTimeoutError:
+ logging.warning("Failed to read PMS5003")
+ else:
+ data = float(data.pm_ug_per_m3(10))
+ display_text(variables[mode], data, unit)
+ if mode == 10:
+ # Everything on one screen
+ cpu_temp = get_cpu_temperature()
+ # Smooth out with some averaging to decrease jitter
+ cpu_temps = cpu_temps[1:] + [cpu_temp]
+ avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps))
+ raw_temp = bme280.get_temperature()
+ raw_data = raw_temp - ((avg_cpu_temp - raw_temp) / factor)
+ save_data(0, raw_data)
+ display_everything()
+ raw_data = bme280.get_pressure()
+ save_data(1, raw_data)
+ display_everything()
+ raw_data = bme280.get_humidity()
+ save_data(2, raw_data)
+ if proximity < 10:
+ raw_data = ltr559.get_lux()
+ else:
+ raw_data = 1
+ save_data(3, raw_data)
+ display_everything()
+ gas_data = gas.read_all()
+ save_data(4, gas_data.oxidising / 1000)
+ save_data(5, gas_data.reducing / 1000)
+ save_data(6, gas_data.nh3 / 1000)
+ display_everything()
+ pms_data = None
+ try:
+ pms_data = pms5003.read()
+ except (SerialTimeoutError, pmsReadTimeoutError):
+ logging.warning("Failed to read PMS5003")
+ else:
+ save_data(7, float(pms_data.pm_ug_per_m3(1.0)))
+ save_data(8, float(pms_data.pm_ug_per_m3(2.5)))
+ save_data(9, float(pms_data.pm_ug_per_m3(10)))
+ display_everything()
+
+ # Exit cleanly
+ except KeyboardInterrupt:
+ sys.exit(0)
+
+
+if __name__ == "__main__":
+ main()