8e82b6b969510cd7fc55c5b854efab3d31185212
[EVA-2020-02-2.git] / examples / all-in-one.py
1 #!/usr/bin/env python
2
3 import time
4 import colorsys
5 import os
6 import sys
7 import ST7735
8 import ltr559
9
10 from bme280 import BME280
11 from pms5003 import PMS5003
12 from enviroplus import gas
13 from subprocess import PIPE, Popen
14 from PIL import Image
15 from PIL import ImageDraw
16 from PIL import ImageFont
17
18 print("""all-in-one.py - Displays readings from all of Enviro plus' sensors
19
20 Press Ctrl+C to exit!
21
22 """)
23
24 # BME280 temperature/pressure/humidity sensor
25 bme280 = BME280()
26
27 # PMS5003 particulate sensor
28 pms5003 = PMS5003()
29
30 # Create ST7735 LCD display class
31 st7735 = ST7735.ST7735(
32 port=0,
33 cs=1,
34 dc=9,
35 backlight=12,
36 rotation=270,
37 spi_speed_hz=10000000
38 )
39
40 # Initialize display
41 st7735.begin()
42
43 WIDTH = st7735.width
44 HEIGHT = st7735.height
45
46 # Set up canvas and font
47 img = Image.new('RGB', (WIDTH, HEIGHT), color=(0, 0, 0))
48 draw = ImageDraw.Draw(img)
49 path = os.path.dirname(os.path.realpath(__file__))
50 font = ImageFont.truetype(path + "/fonts/Asap/Asap-Bold.ttf", 20)
51
52 message = ""
53
54 # The position of the top bar
55 top_pos = 25
56
57
58 # Displays data and text on the 0.96" LCD
59 def display_text(variable, data, unit):
60 # Maintain length of list
61 values[variable] = values[variable][1:] + [data]
62 # Scale the values for the variable between 0 and 1
63 colours = [(v - min(values[variable]) + 1) / (max(values[variable])
64 - min(values[variable]) + 1) for v in values[variable]]
65 # Format the variable name and value
66 message = "{}: {:.1f} {}".format(variable[:4], data, unit)
67 print(message)
68 draw.rectangle((0, 0, WIDTH, HEIGHT), (255, 255, 255))
69 for i in range(len(colours)):
70 # Convert the values to colours from red to blue
71 colour = (1.0 - colours[i]) * 0.6
72 r, g, b = [int(x * 255.0) for x in colorsys.hsv_to_rgb(colour,
73 1.0, 1.0)]
74 # Draw a 1-pixel wide rectangle of colour
75 draw.rectangle((i, top_pos, i+1, HEIGHT), (r, g, b))
76 # Draw a line graph in black
77 line_y = HEIGHT - (top_pos + (colours[i] * (HEIGHT - top_pos)))\
78 + top_pos
79 draw.rectangle((i, line_y, i+1, line_y+1), (0, 0, 0))
80 # Write the text at the top in black
81 draw.text((0, 0), message, font=font, fill=(0, 0, 0))
82 st7735.display(img)
83
84
85 # Get the temperature of the CPU for compensation
86 def get_cpu_temperature():
87 process = Popen(['vcgencmd', 'measure_temp'], stdout=PIPE, universal_newlines=True)
88 output, _error = process.communicate()
89 output = output.decode()
90 return float(output[output.index('=') + 1:output.rindex("'")])
91
92
93 # Tuning factor for compensation. Decrease this number to adjust the
94 # temperature down, and increase to adjust up
95 factor = 0.8
96
97 cpu_temps = [0] * 5
98
99 delay = 0.5 # Debounce the proximity tap
100 mode = 0 # The starting mode
101 last_page = 0
102 light = 1
103
104 # Create a values dict to store the data
105 variables = ["temperature",
106 "pressure",
107 "humidity",
108 "light",
109 "oxidised",
110 "reduced",
111 "nh3",
112 "pm1",
113 "pm25",
114 "pm10"]
115
116 values = {}
117
118 for v in variables:
119 values[v] = [1] * WIDTH
120
121 # The main loop
122 try:
123 while True:
124 proximity = ltr559.get_proximity()
125
126 # If the proximity crosses the threshold, toggle the mode
127 if proximity > 1500 and time.time() - last_page > delay:
128 mode += 1
129 mode %= len(variables)
130 last_page = time.time()
131
132 # One mode for each variable
133 if mode == 0:
134 variable = "temperature"
135 unit = "C"
136 cpu_temp = get_cpu_temperature()
137 # Smooth out with some averaging to decrease jitter
138 cpu_temps = cpu_temps[1:] + [cpu_temp]
139 avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps))
140 raw_temp = bme280.get_temperature()
141 data = raw_temp - ((avg_cpu_temp - raw_temp) / factor)
142 display_text(variable, data, unit)
143
144 if mode == 1:
145 variable = "pressure"
146 unit = "hPa"
147 data = bme280.get_pressure()
148 display_text(variable, data, unit)
149
150 if mode == 2:
151 variable = "humidity"
152 unit = "%"
153 data = bme280.get_humidity()
154 display_text(variable, data, unit)
155
156 if mode == 3:
157 variable = "light"
158 unit = "Lux"
159 if proximity < 10:
160 data = ltr559.get_lux()
161 else:
162 data = 1
163 display_text(variable, data, unit)
164
165 if mode == 4:
166 variable = "oxidised"
167 unit = "kO"
168 data = gas.read_all()
169 data = data.oxidising / 1000
170 display_text(variable, data, unit)
171
172 if mode == 5:
173 variable = "reduced"
174 unit = "kO"
175 data = gas.read_all()
176 data = data.reducing / 1000
177 display_text(variable, data, unit)
178
179 if mode == 6:
180 variable = "nh3"
181 unit = "kO"
182 data = gas.read_all()
183 data = data.nh3 / 1000
184 display_text(variable, data, unit)
185
186 if mode == 7:
187 variable = "pm1"
188 unit = "ug/m3"
189 data = pms5003.read()
190 data = data.pm_ug_per_m3(1.0)
191 display_text(variable, data, unit)
192
193 if mode == 8:
194 variable = "pm25"
195 unit = "ug/m3"
196 data = pms5003.read()
197 data = data.pm_ug_per_m3(2.5)
198 display_text(variable, data, unit)
199
200 if mode == 9:
201 variable = "pm10"
202 unit = "ug/m3"
203 data = pms5003.read()
204 data = data.pm_ug_per_m3(10)
205 display_text(variable, data, unit)
206
207 # Exit cleanly
208 except KeyboardInterrupt:
209 sys.exit(0)