| 1 | #!/usr/bin/env python |
| 2 | |
| 3 | import time |
| 4 | import colorsys |
| 5 | import os |
| 6 | import sys |
| 7 | import ST7735 |
| 8 | try: |
| 9 | # Transitional fix for breaking change in LTR559 |
| 10 | from ltr559 import LTR559 |
| 11 | ltr559 = LTR559() |
| 12 | except ImportError: |
| 13 | import ltr559 |
| 14 | |
| 15 | from bme280 import BME280 |
| 16 | from pms5003 import PMS5003, ReadTimeoutError as pmsReadTimeoutError |
| 17 | from enviroplus import gas |
| 18 | from subprocess import PIPE, Popen |
| 19 | from PIL import Image |
| 20 | from PIL import ImageDraw |
| 21 | from PIL import ImageFont |
| 22 | import logging |
| 23 | |
| 24 | logging.basicConfig( |
| 25 | format='%(asctime)s.%(msecs)03d %(levelname)-8s %(message)s', |
| 26 | level=logging.INFO, |
| 27 | datefmt='%Y-%m-%d %H:%M:%S') |
| 28 | |
| 29 | logging.info("""all-in-one.py - Displays readings from all of Enviro plus' sensors |
| 30 | |
| 31 | Press Ctrl+C to exit! |
| 32 | |
| 33 | """) |
| 34 | |
| 35 | # BME280 temperature/pressure/humidity sensor |
| 36 | bme280 = BME280() |
| 37 | |
| 38 | # PMS5003 particulate sensor |
| 39 | pms5003 = PMS5003() |
| 40 | time.sleep(1.0) |
| 41 | |
| 42 | # Create ST7735 LCD display class |
| 43 | st7735 = ST7735.ST7735( |
| 44 | port=0, |
| 45 | cs=1, |
| 46 | dc=9, |
| 47 | backlight=12, |
| 48 | rotation=270, |
| 49 | spi_speed_hz=10000000 |
| 50 | ) |
| 51 | |
| 52 | # Initialize display |
| 53 | st7735.begin() |
| 54 | |
| 55 | WIDTH = st7735.width |
| 56 | HEIGHT = st7735.height |
| 57 | |
| 58 | # Set up canvas and font |
| 59 | img = Image.new('RGB', (WIDTH, HEIGHT), color=(0, 0, 0)) |
| 60 | draw = ImageDraw.Draw(img) |
| 61 | path = os.path.dirname(os.path.realpath(__file__)) |
| 62 | font = ImageFont.truetype(path + "/fonts/Asap/Asap-Bold.ttf", 20) |
| 63 | smallfont = ImageFont.truetype(path + "/fonts/Asap/Asap-Bold.ttf", 10) |
| 64 | x_offset = 2 |
| 65 | y_offset = 2 |
| 66 | |
| 67 | message = "" |
| 68 | |
| 69 | # The position of the top bar |
| 70 | top_pos = 25 |
| 71 | |
| 72 | # Create a values dict to store the data |
| 73 | variables = ["temperature", |
| 74 | "pressure", |
| 75 | "humidity", |
| 76 | "light", |
| 77 | "oxidised", |
| 78 | "reduced", |
| 79 | "nh3", |
| 80 | "pm1", |
| 81 | "pm25", |
| 82 | "pm10"] |
| 83 | |
| 84 | units = ["C", |
| 85 | "hPa", |
| 86 | "%", |
| 87 | "Lux", |
| 88 | "kO", |
| 89 | "kO", |
| 90 | "kO", |
| 91 | "ug/m3", |
| 92 | "ug/m3", |
| 93 | "ug/m3"] |
| 94 | |
| 95 | # Define your own warning limits |
| 96 | # The limits definition follows the order of the variables array |
| 97 | # Example limits explanation for temperature: |
| 98 | # [4,18,28,35] means |
| 99 | # [-273.15 .. 4] -> Dangerously Low |
| 100 | # (4 .. 18] -> Low |
| 101 | # (18 .. 28] -> Normal |
| 102 | # (28 .. 35] -> High |
| 103 | # (35 .. MAX] -> Dangerously High |
| 104 | # DISCLAIMER: The limits provided here are just examples and come |
| 105 | # with NO WARRANTY. The authors of this example code claim |
| 106 | # NO RESPONSIBILITY if reliance on the following values or this |
| 107 | # code in general leads to ANY DAMAGES or DEATH. |
| 108 | limits = [[4,18,28,35], |
| 109 | [250,650,1013.25,1015], |
| 110 | [20,30,60,70], |
| 111 | [-1,-1,30000,100000], |
| 112 | [-1,-1,40,50], |
| 113 | [-1,-1,450,550], |
| 114 | [-1,-1,200,300], |
| 115 | [-1,-1,50,100], |
| 116 | [-1,-1,50,100], |
| 117 | [-1,-1,50,100]] |
| 118 | |
| 119 | # RGB palette for values on the combined screen |
| 120 | palette = [(0,0,255), # Dangerously Low |
| 121 | (0,255,255), # Low |
| 122 | (0,255,0), # Normal |
| 123 | (255,255,0), # High |
| 124 | (255,0,0)] # Dangerously High |
| 125 | |
| 126 | values = {} |
| 127 | |
| 128 | |
| 129 | # Displays data and text on the 0.96" LCD |
| 130 | def display_text(variable, data, unit): |
| 131 | # Maintain length of list |
| 132 | values[variable] = values[variable][1:] + [data] |
| 133 | # Scale the values for the variable between 0 and 1 |
| 134 | colours = [(v - min(values[variable]) + 1) / (max(values[variable]) |
| 135 | - min(values[variable]) + 1) for v in values[variable]] |
| 136 | # Format the variable name and value |
| 137 | message = "{}: {:.1f} {}".format(variable[:4], data, unit) |
| 138 | logging.info(message) |
| 139 | draw.rectangle((0, 0, WIDTH, HEIGHT), (255, 255, 255)) |
| 140 | for i in range(len(colours)): |
| 141 | # Convert the values to colours from red to blue |
| 142 | colour = (1.0 - colours[i]) * 0.6 |
| 143 | r, g, b = [int(x * 255.0) for x in colorsys.hsv_to_rgb(colour, |
| 144 | 1.0, 1.0)] |
| 145 | # Draw a 1-pixel wide rectangle of colour |
| 146 | draw.rectangle((i, top_pos, i+1, HEIGHT), (r, g, b)) |
| 147 | # Draw a line graph in black |
| 148 | line_y = HEIGHT - (top_pos + (colours[i] * (HEIGHT - top_pos)))\ |
| 149 | + top_pos |
| 150 | draw.rectangle((i, line_y, i+1, line_y+1), (0, 0, 0)) |
| 151 | # Write the text at the top in black |
| 152 | draw.text((0, 0), message, font=font, fill=(0, 0, 0)) |
| 153 | st7735.display(img) |
| 154 | |
| 155 | # Saves the data to be used in the graphs later and prints to the log |
| 156 | def save_data(idx, data): |
| 157 | variable = variables[idx] |
| 158 | # Maintain length of list |
| 159 | values[variable] = values[variable][1:] + [data] |
| 160 | unit = units[idx] |
| 161 | message = "{}: {:.1f} {}".format(variable[:4], data, unit) |
| 162 | logging.info(message) |
| 163 | |
| 164 | |
| 165 | # Displays all the text on the 0.96" LCD |
| 166 | def display_everything(): |
| 167 | draw.rectangle((0, 0, WIDTH, HEIGHT), (0, 0, 0)) |
| 168 | column_count = 2 |
| 169 | row_count = (len(variables)/column_count) |
| 170 | for i in xrange(len(variables)): |
| 171 | variable = variables[i] |
| 172 | data_value = values[variable][-1] |
| 173 | unit = units[i] |
| 174 | x = x_offset + ((WIDTH/column_count) * (i / row_count)) |
| 175 | y = y_offset + ((HEIGHT/row_count) * (i % row_count)) |
| 176 | message = "{}: {:.1f} {}".format(variable[:4], data_value, unit) |
| 177 | lim = limits[i] |
| 178 | rgb = palette[0] |
| 179 | for j in xrange(len(lim)): |
| 180 | if data_value > lim[j]: |
| 181 | rgb = palette[j+1] |
| 182 | draw.text((x, y), message, font=smallfont, fill=rgb) |
| 183 | st7735.display(img) |
| 184 | |
| 185 | |
| 186 | |
| 187 | # Get the temperature of the CPU for compensation |
| 188 | def get_cpu_temperature(): |
| 189 | process = Popen(['vcgencmd', 'measure_temp'], stdout=PIPE, universal_newlines=True) |
| 190 | output, _error = process.communicate() |
| 191 | return float(output[output.index('=') + 1:output.rindex("'")]) |
| 192 | |
| 193 | |
| 194 | # Tuning factor for compensation. Decrease this number to adjust the |
| 195 | # temperature down, and increase to adjust up |
| 196 | factor = 1.95 |
| 197 | |
| 198 | cpu_temps = [get_cpu_temperature()] * 5 |
| 199 | |
| 200 | delay = 0.5 # Debounce the proximity tap |
| 201 | mode = 10 # The starting mode |
| 202 | last_page = 0 |
| 203 | light = 1 |
| 204 | |
| 205 | for v in variables: |
| 206 | values[v] = [1] * WIDTH |
| 207 | |
| 208 | # The main loop |
| 209 | try: |
| 210 | while True: |
| 211 | proximity = ltr559.get_proximity() |
| 212 | |
| 213 | # If the proximity crosses the threshold, toggle the mode |
| 214 | if proximity > 1500 and time.time() - last_page > delay: |
| 215 | mode += 1 |
| 216 | mode %= (len(variables)+1) |
| 217 | last_page = time.time() |
| 218 | |
| 219 | # One mode for each variable |
| 220 | if mode == 0: |
| 221 | # variable = "temperature" |
| 222 | unit = "C" |
| 223 | cpu_temp = get_cpu_temperature() |
| 224 | # Smooth out with some averaging to decrease jitter |
| 225 | cpu_temps = cpu_temps[1:] + [cpu_temp] |
| 226 | avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps)) |
| 227 | raw_temp = bme280.get_temperature() |
| 228 | data = raw_temp - ((avg_cpu_temp - raw_temp) / factor) |
| 229 | display_text(variables[mode], data, unit) |
| 230 | |
| 231 | if mode == 1: |
| 232 | # variable = "pressure" |
| 233 | unit = "hPa" |
| 234 | data = bme280.get_pressure() |
| 235 | display_text(variables[mode], data, unit) |
| 236 | |
| 237 | if mode == 2: |
| 238 | # variable = "humidity" |
| 239 | unit = "%" |
| 240 | data = bme280.get_humidity() |
| 241 | display_text(variables[mode], data, unit) |
| 242 | |
| 243 | if mode == 3: |
| 244 | # variable = "light" |
| 245 | unit = "Lux" |
| 246 | if proximity < 10: |
| 247 | data = ltr559.get_lux() |
| 248 | else: |
| 249 | data = 1 |
| 250 | display_text(variables[mode], data, unit) |
| 251 | |
| 252 | if mode == 4: |
| 253 | # variable = "oxidised" |
| 254 | unit = "kO" |
| 255 | data = gas.read_all() |
| 256 | data = data.oxidising / 1000 |
| 257 | display_text(variables[mode], data, unit) |
| 258 | |
| 259 | if mode == 5: |
| 260 | # variable = "reduced" |
| 261 | unit = "kO" |
| 262 | data = gas.read_all() |
| 263 | data = data.reducing / 1000 |
| 264 | display_text(variables[mode], data, unit) |
| 265 | |
| 266 | if mode == 6: |
| 267 | # variable = "nh3" |
| 268 | unit = "kO" |
| 269 | data = gas.read_all() |
| 270 | data = data.nh3 / 1000 |
| 271 | display_text(variables[mode], data, unit) |
| 272 | |
| 273 | if mode == 7: |
| 274 | # variable = "pm1" |
| 275 | unit = "ug/m3" |
| 276 | try: |
| 277 | data = pms5003.read() |
| 278 | except pmsReadTimeoutError: |
| 279 | logging.warn("Failed to read PMS5003") |
| 280 | else: |
| 281 | data = float(data.pm_ug_per_m3(1.0)) |
| 282 | display_text(variables[mode], data, unit) |
| 283 | |
| 284 | if mode == 8: |
| 285 | # variable = "pm25" |
| 286 | unit = "ug/m3" |
| 287 | try: |
| 288 | data = pms5003.read() |
| 289 | except pmsReadTimeoutError: |
| 290 | logging.warn("Failed to read PMS5003") |
| 291 | else: |
| 292 | data = float(data.pm_ug_per_m3(2.5)) |
| 293 | display_text(variables[mode], data, unit) |
| 294 | |
| 295 | if mode == 9: |
| 296 | # variable = "pm10" |
| 297 | unit = "ug/m3" |
| 298 | try: |
| 299 | data = pms5003.read() |
| 300 | except pmsReadTimeoutError: |
| 301 | logging.warn("Failed to read PMS5003") |
| 302 | else: |
| 303 | data = float(data.pm_ug_per_m3(10)) |
| 304 | display_text(variables[mode], data, unit) |
| 305 | if mode == 10: |
| 306 | # Everything on one screen |
| 307 | cpu_temp = get_cpu_temperature() |
| 308 | # Smooth out with some averaging to decrease jitter |
| 309 | cpu_temps = cpu_temps[1:] + [cpu_temp] |
| 310 | avg_cpu_temp = sum(cpu_temps) / float(len(cpu_temps)) |
| 311 | raw_temp = bme280.get_temperature() |
| 312 | raw_data = raw_temp - ((avg_cpu_temp - raw_temp) / factor) |
| 313 | save_data(0, raw_data) |
| 314 | display_everything() |
| 315 | raw_data = bme280.get_pressure() |
| 316 | save_data(1, raw_data) |
| 317 | display_everything() |
| 318 | raw_data = bme280.get_humidity() |
| 319 | save_data(2, raw_data) |
| 320 | if proximity < 10: |
| 321 | raw_data = ltr559.get_lux() |
| 322 | else: |
| 323 | raw_data = 1 |
| 324 | save_data(3, raw_data) |
| 325 | display_everything() |
| 326 | gas_data = gas.read_all() |
| 327 | save_data(4, gas_data.oxidising / 1000) |
| 328 | save_data(5, gas_data.reducing / 1000) |
| 329 | save_data(6, gas_data.nh3 / 1000) |
| 330 | display_everything() |
| 331 | pms_data = None |
| 332 | try: |
| 333 | pms_data = pms5003.read() |
| 334 | except pmsReadTimeoutError: |
| 335 | logging.warn("Failed to read PMS5003") |
| 336 | else: |
| 337 | save_data(7, float(pms_data.pm_ug_per_m3(1.0))) |
| 338 | save_data(8, float(pms_data.pm_ug_per_m3(2.5))) |
| 339 | save_data(9, float(pms_data.pm_ug_per_m3(10))) |
| 340 | display_everything() |
| 341 | |
| 342 | |
| 343 | |
| 344 | # Exit cleanly |
| 345 | except KeyboardInterrupt: |
| 346 | sys.exit(0) |