016e9f396c4a77aeed3a1de9bca251e6c1582853
2 # Desc: Pauses a random amount of time. Random distribution is inverse gaussian.
4 # Depends: python 3.7.3
5 # Usage: ./sleepRand.py [-v] [-p P] SECONDS
6 # Input: SECONDS: float seconds (mean of inverse gaussian distribution)
7 # P: precision (lambda of inverse gaussian distribution)
8 # Example: python3 sleepRand.py -vv -p 8.0 60.0
11 import math
, time
, random
, sys
;
14 # Set up argument parser (see https://docs.python.org/3.7/library/argparse.html )
15 parser
= argparse
.ArgumentParser(
16 description
='Delay activity for a random number of seconds. Delays sampled from an inverse gaussian distribution.',
17 epilog
="Author: Steven Baltakatei Sandoval. License: GPLv3+");
18 parser
.add_argument('-v','--verbose',
22 help='Verbose output. (repeat for increased verbosity)');
23 parser
.add_argument('mean',
29 help='Mean seconds of delay. Is the mean of the inverse gaussian distribution.');
30 parser
.add_argument('--precision','-p',
36 help='How concentrated delays are around the mean (default: 4.0). Must be a positive integer or floating point value. Is the lambda factor in the inverse gaussian distribution. High values (e.g. > 10.0) cause random delays to rarely stray far from MEAN. Small values (e.g. < 0.10) result in many small delays plus occasional long delays.');
37 parser
.add_argument('--upper','-u',
43 help='Upper bound for possible delays (default: no bound). Without bound, extremely high delays are unlikely but possible.');
44 args
= parser
.parse_args();
47 def setup_logging(verbosity
):
49 # Depends: module: argparse
50 # Ref/Attrib: Haas, Florian; Configure logging with argparse; https://xahteiwi.eu/resources/hints-and-kinks/python-cli-logging-options/
52 verbosity
= min(verbosity
, 2);
53 loglevel
= base_loglevel
- (verbosity
* 10);
54 logging
.basicConfig(level
=loglevel
,
55 format
='%(message)s');
57 def randInvGau(mu
, lam
):
58 """Returns random variate of inverse gaussian distribution"""
59 # input: mu: mean of inverse gaussian distribution
60 # lam: shape parameter
61 # output: float sampled from inv. gaus. with range 0 to infinity, mean mu
62 # example: sample = float(randInvGau(1.0,4.0));
63 # Ref/Attrib: Michael, John R. "Generating Random Variates Using Transformations with Multiple Roots" https://doi.org/10.2307/2683801
64 nu
= random
.gauss(0,1);
67 xTerm2
= mu
** 2 * y
/ (2 * lam
);
68 xTerm3
= (- mu
/ (2 * lam
)) * math
.sqrt(4 * mu
* lam
* y
+ mu
** 2 * y
** 2);
69 x
= xTerm1
+ xTerm2
+ xTerm3
;
70 z
= random
.uniform(0.0,1.0);
71 if z
<= (mu
/ (mu
+ x
)):
78 setup_logging(args
.verbosity
);
79 logging
.debug('DEBUG:Debug logging output enabled.');
80 logging
.debug('DEBUG:args.verbosity:' + str(args
.verbosity
));
81 logging
.debug('DEBUG:args:' + str(args
));
83 ## Receive input arguments
86 desMean
= args
.mean
[0];
87 logging
.debug('DEBUG:Desired mean:' + str(desMean
));
89 ### Get lambda precision factor
90 lambdaFactor
= args
.precision
[0];
91 logging
.debug('DEBUG:Lambda precision factor:' + str(lambdaFactor
));
94 if isinstance(args
.upper
[0], float):
95 logging
.debug('DEBUG:args.upper[0] is float:' + str(args
.upper
[0]));
96 upperBound
= args
.upper
[0];
97 elif args
.upper
[0] is None:
98 logging
.debug('DEBUG:args.upper[0] is None:' + str(args
.upper
[0]));
101 raise TypeError('Upper bound not set correctly.');
102 logging
.debug('DEBUG:Upper bound:' + str(upperBound
));
104 ### Reject negative floats.
106 logging
.error('ERROR:Desired mean is negative:' + str(desMean
));
107 raise ValueError('Negative number error.');
109 logging
.error('ERROR:Lambda precision factor is negative:' + str(lambdaFactor
));
110 raise ValueError('Negative number error.');
115 rawDelay
= randInvGau(desMean
, desMean
* lambdaFactor
);
116 logging
.debug('DEBUG:rawDelay(seconds):' + str(rawDelay
));
117 if isinstance(upperBound
,float):
118 delay
= min(upperBound
, rawDelay
);
119 elif upperBound
is None:
121 logging
.debug('DEBUG:delay(seconds) :' + str(delay
));
124 time
.sleep(float(delay
));
126 # Author: Steven Baltakatei Sandoal