7a9b2b74e2674d115a34225b6860db637dcfd61b
[BK-2020-03.git] / unitproc / python / sleepRand.py
1 #!/usr/bin/env python3
2 # Desc: Pauses a random amount of time. Random distribution is inverse gaussian.
3 # Version: 0.0.5
4 # Depends: python 3.7.3
5 # Usage: ./sleepRand.py [-v] [-p P] SECONDS
6 # Input: SECONDS: float seconds (mean of inverse gaussian distribution)
7 # P: precision (lambda of inverse gaussian distribution)
8 # Example: python3 sleepRand.py -vv -p 8.0 60.0
9
10 import argparse;
11 import math, time, random, sys;
12 import logging;
13
14 # Set up argument parser (see https://docs.python.org/3.7/library/argparse.html )
15 parser = argparse.ArgumentParser(
16 description='Delay activity for a random number of seconds. Delays sampled from an inverse gaussian distribution.',
17 epilog="Author: Steven Baltakatei Sandoval. License: GPLv3+");
18 parser.add_argument('-v','--verbose',
19 action='count',
20 dest='verbosity',
21 default=0,
22 help='Verbose output. (repeat for increased verbosity)');
23 parser.add_argument('mean',
24 action='store',
25 metavar='SECONDS',
26 nargs=1,
27 default=1,
28 type=float,
29 help='Mean seconds of delay. Is the mean of the inverse gaussian distribution.');
30 parser.add_argument('--precision','-p',
31 action='store',
32 metavar='P',
33 nargs=1,
34 default=[4.0],
35 type=float,
36 help='How concentrated delays are around the mean (default: 4.0). Must be a positive integer or floating point value. Is the lambda factor in the inverse gaussian distribution. High values (e.g. > 10.0) cause random delays to rarely stray far from MEAN. Small values (e.g. < 0.10) result in many small delays plus occasional long delays.');
37 args = parser.parse_args();
38
39 # Define functions
40 def setup_logging(verbosity):
41 '''Sets up logging'''
42 # Depends: module: argparse
43 # Ref/Attrib: Haas, Florian; Configure logging with argparse; https://xahteiwi.eu/resources/hints-and-kinks/python-cli-logging-options/
44 base_loglevel = 30;
45 verbosity = min(verbosity, 2);
46 loglevel = base_loglevel - (verbosity * 10);
47 logging.basicConfig(level=loglevel,
48 format='%(message)s');
49
50 def randInvGau(mu, lam):
51 """Returns random variate of inverse gaussian distribution"""
52 # input: mu: mean of inverse gaussian distribution
53 # lam: shape parameter
54 # output: float sampled from inv. gaus. with range 0 to infinity, mean mu
55 # example: sample = float(randInvGau(1.0,4.0));
56 # Ref/Attrib: Michael, John R. "Generating Random Variates Using Transformations with Multiple Roots" https://doi.org/10.2307/2683801
57 nu = random.gauss(0,1);
58 y = nu ** 2;
59 xTerm1 = mu;
60 xTerm2 = mu ** 2 * y / (2 * lam);
61 xTerm3 = (- mu / (2 * lam)) * math.sqrt(4 * mu * lam * y + mu ** 2 * y ** 2);
62 x = xTerm1 + xTerm2 + xTerm3;
63 z = random.uniform(0.0,1.0);
64 if z <= (mu / (mu + x)):
65 return x;
66 else:
67 return (mu ** 2 / x);
68
69 # Process input
70 ## Start up logger
71 setup_logging(args.verbosity);
72 logging.debug('DEBUG:Debug logging output enabled.');
73 logging.debug('DEBUG:args.verbosity:' + str(args.verbosity));
74 logging.debug('DEBUG:args:' + str(args));
75
76 ## Reject negative floats.
77 try:
78 ### Get desired mean
79 desMean = args.mean[0];
80 logging.debug('DEBUG:Desired mean:' + str(desMean));
81 ### Get lambda precision factor
82 lambdaFactor = args.precision[0];
83 logging.debug('DEBUG:Lambda precision factor:' + str(lambdaFactor));
84 if desMean < 0:
85 logging.error('ERROR:Desired mean is negative:' + str(desMean));
86 raise ValueError('Negative number error.');
87 if lambdaFactor < 0:
88 logging.error('ERROR:Lambda precision factor is negative:' + str(lambdaFactor));
89 raise ValueError('Negative number error.');
90 except ValueError:
91 sys.exit(1);
92
93 # Calculate delay
94 delay = randInvGau(desMean, desMean * lambdaFactor);
95 logging.debug('delay:' + str(delay));
96
97 # Sleep
98 time.sleep(float(delay));
99
100 # Author: Steven Baltakatei Sandoal
101 # License: GPLv3+