]>
zdv2.bktei.com Git - BK-2020-03.git/blob - unitproc/python/sleepRand.py
39175065a96362c4a613004dcf2004143287e217
2 # Desc: Pauses a random amount of time. Random distribution is inverse gaussian.
4 # Depends: python 3.7.3
5 # Usage: ./sleepRand.py [-v] [-p L] SECONDS
6 # Input: SECONDS: float seconds (mean of inverse gaussian distribution)
7 # L: precision (lambda of inverse gaussian distribution)
8 # Example: python3 sleepRand.py -vv -p 8.0 60.0
11 import math
, time
, random
, sys
;
14 # Set up argument parser (see https://docs.python.org/3.7/library/argparse.html )
15 parser
= argparse
. ArgumentParser (
16 description
= 'Delay activity for a random number of seconds. Delays sampled from an inverse gaussian distribution.' ,
17 epilog
= "Author: Steven Baltakatei Sandoval. License: GPLv3+" );
18 parser
. add_argument ( '-v' , '--verbose' ,
22 help = 'Verbose output. (repeat for increased verbosity)' );
23 parser
. add_argument ( 'mean' ,
29 help = 'Mean seconds of delay. Is the mean of the inverse gaussian distribution.' );
30 parser
. add_argument ( '--precision' , '-p' ,
36 help = 'How concentrated delays are around the mean (default: 4.0). Must be a positive integer or floating point value. Is the lambda factor in the inverse gaussian distribution. High values (e.g. > 10.0) cause random delays to rarely stray far from MEAN. Small values (e.g. < 0.10) result in many small delays plus occasional long delays.' );
37 args
= parser
. parse_args ();
40 def setup_logging ( verbosity
):
41 # Depends: module: argparse
42 # Ref/Attrib: Haas, Florian; Configure logging with argparse; https://xahteiwi.eu/resources/hints-and-kinks/python-cli-logging-options/
44 verbosity
= min ( verbosity
, 2 );
45 loglevel
= base_loglevel
- ( verbosity
* 10 );
46 logging
. basicConfig ( level
= loglevel
,
47 format
= ' %(message)s ' );
49 def randInvGau ( mu
, lam
):
50 """Returns random variate of inverse gaussian distribution"""
51 # input: mu: mean of inverse gaussian distribution
52 # lam: shape parameter
53 # output: float sampled from inv. gaus. with range 0 to infinity, mean mu
54 # example: sample = float(randInvGau(1.0,4.0));
55 # Ref/Attrib: Michael, John R. "Generating Random Variates Using Transformations with Multiple Roots" https://doi.org/10.2307/2683801
56 nu
= random
. gauss ( 0 , 1 );
59 xTerm2
= mu
** 2 * y
/ ( 2 * lam
);
60 xTerm3
= (- mu
/ ( 2 * lam
)) * math
. sqrt ( 4 * mu
* lam
* y
+ mu
** 2 * y
** 2 );
61 x
= xTerm1
+ xTerm2
+ xTerm3
;
62 z
= random
. uniform ( 0.0 , 1.0 );
63 if z
<= ( mu
/ ( mu
+ x
)):
70 setup_logging ( args
. verbosity
);
71 logging
. debug ( 'DEBUG:Debug logging output enabled.' );
72 logging
. debug ( 'DEBUG:args.verbosity:' + str ( args
. verbosity
));
73 logging
. debug ( 'DEBUG:args:' + str ( args
));
74 ## Reject negative floats.
77 desMean
= args
. mean
[ 0 ];
78 logging
. debug ( 'DEBUG:Desired mean:' + str ( desMean
));
79 ### Get lambda precision factor
80 lambdaFactor
= args
. precision
[ 0 ];
81 logging
. debug ( 'DEBUG:Lambda precision factor:' + str ( lambdaFactor
));
83 logging
. error ( 'ERROR:Desired mean is negative:' + str ( desMean
));
84 raise ValueError ( 'Negative number error.' );
86 logging
. error ( 'ERROR:Lambda precision factor is negative:' + str ( lambdaFactor
));
87 raise ValueError ( 'Negative number error.' );
92 delay
= randInvGau ( desMean
, desMean
* lambdaFactor
);
93 logging
. debug ( 'delay:' + str ( delay
));
96 time
. sleep ( float ( delay
));
98 # Author: Steven Baltakatei Sandoal